6 research outputs found

    Dynamic Analysis of a Microgrid Powered With an Inverter and Machine-Based Distributed Resources

    Full text link
    The proliferation of renewable distributed energy resources, particularly photovoltaic (PV) power systems, and the increasing need for a reliable power supply has led to the concept of microgrids, a mini-grid that consists of locally connected power generation units and needs, able to operate connected or disconnected from the utility grid, using controlled and coordinated methods to provide for the users of the microgrid the best possible conditions for their needs. The main technical issues facing microgrids include some of the following, seamless transition from stand-alone to utility grid connected operation, how to preserve frequency and voltage stability, and provide the lowest cost power among numerous power resources. Technologies that will be used in the future smart grid will be built, tested, and fielded in modern microgrids with many national laboratories, utility companies, and universities using microgrids of all different types for research and development. This dissertation describes the design, fabrication, and testing of a microgrid facility which comprises adjustable resistive and inductive loads, a diesel-powered generator (DG), an advanced inverter PV system, a battery energy storage system (BESS), monitoring, protection, and control devices. The microgrid facility was built with the foresight that it would be used for conducting tests and experiments related to microgrid technical challenges, thus ease of access and expandability were built in which allows it to be used for both research and education purposes. Numerous experimental tests conducted include the following: (a) the dynamic response of a DG to load changes, (b) an advanced PV inverters autonomous functions, (c) advanced inverter islanding test, (d) load sharing among the DG and PV system, (e) PV and battery storage systems load sharing, (d) dynamic performance of an advanced PV inverter and a DG during unintentional islanding under different power export/import conditions, and (e) BESS iv response to utility outage under different PV operating conditions. Attempts to improve reliability and power quality are made by expanding the PV inverter ride-through times during frequency and voltage abnormalities. An economic analysis in terms of Net Present Value (NPV) is conducted on a residential application where a BESS is paired with a PV system to shift solar energy in favor Time-of-Use (ToU) pricing and to provide ancillary grid services

    Status of the nevada Shocker At the University of nevada, Las Vegas

    Full text link
    The Nevada shocker is a 540 kV, 7 /spl Omega/, 50 ns pulsed power device based on Marx bank and Blumlein technologies. The Marx bank is composed of nine 60 kV capacitors charged in series with a gamma high voltage source connected by means of Ross relays in an air environment. A trigatron switch energized with an isolated mini capacitor bank is used to erect the Marx bank. The trigatron switch and erecting electrodes are contained in a gas manifold pressurized to 20 /spl plusmn/ 1 psi with dry air. The energy is released sequentially through an inductor and a water filled charging transmission line to the Blumlein immersed in deionized water. The Blumlein shapes and compresses the energy into a 50 ns pulse upon discharge. A self-breaking water switch initiates the release of energy in the Blumlein. The energy flows through a water filled discharging transmission line to the diode end of the Nevada Shocker. The current diode end of the Blumlein supports vacuum pressures as low as 6.5 /spl times/ 10/sup -6/ Torr. The chamber is pumped with the aid of a roughing pump and a cryogenic vacuum pump. The vacuum section of the Nevada Shocker is currently being rebuilt to incorporate mechanical and thermal loading capabilities with sensors located at the experiment. A number of diagnostic developments are currently underway to support flashover studies on plastics. Resistive probe and differential B-dot diagnostics with the aid of a 6 GHz 20 GS/s TDS 6604 real time scope is documented demonstrating the capability of the machine

    Wrongful Convictions: A Comparative Perspective

    No full text
    corecore