69 research outputs found

    cAMP-dependent Protein Kinase Activation Lowers Hepatocyte cAMP

    Get PDF
    Rat hepatocyte protein kinase was activated by incubating the cells with various cAMP analogs. Boiled extracts were then prepared and Sephadex G-25 chromatography was carried out. The G-25 procedure separated the analogs from cAMP since the resin had the unexpected property of binding cyclic nucleotides with differing affinities. Separation was necessary because the analogs would otherwise interfere with the sensitive protein kinase activation method developed for assay of cAMP. The cAMP analogs, but not 5\u27-AMP, lowered basal cAMP by 50-70%. The effect was rapid, analog concentration-dependent, and occurred parallel with phosphorylase activation, suggesting that the cAMP analogs act through cAMP-dependent protein kinase activation. A cAMP analog completely blocked the cAMP elevation produced by relatively low concentrations of glucagon, but did not block the phosphorylase response, indicating that the cAMP analog substitutes for cAMP as the intracellular activator of protein kinase. One implication of the results is that elevation of cAMP and protein kinase activity by hormones has a negative feedback effect on the cellular cAMP level

    Cell Surface-Binding Sites for Progesterone Mediate Calcium Uptake in Human Sperm

    Get PDF
    Recent studies (e.g. Blackmore, P. F., Beebe, S. J., Danforth, D. R., and Alexander, N.) (1990) J. Biol. Chem. 265, 1376-1380) have shown that in human sperm, progesterone produces a rapid increase in intracellular free calcium ([Ca2+]i) and an induction of the acrosome reaction (e.g. Osman, R. A., Andria, M. L., Jones, A. D., and Meizel, S. (1989) Biochem. Biophys. Res. Commun. 160, 828-833). In this study, the location of progesterone receptors on the cell surface of human sperm was identified using progesterone immobilized on bovine serum albumin (BSA) (progesterone 3-(O-carboxymethyl)oxime:BSA) as well as progesterone and its 3-O-carboxymethyloxime derivative. Using fluorescence microscopy, BSA-fluorescein isothiocyanate was shown to be excluded from intact sperm, thus validating the use of progesterone 3-(O-carboxymethyl)oxime:BSA to identify cell surface-binding sites for progesterone. The immobilized progesterone and the 3-O-carboxymethyloxime derivative rapidly increased [Ca2+]i and were full agonists, although they were approximately 1.5 orders of magnitude less potent than progesterone. They also displayed an identical time course to increase [Ca2+]i as free progesterone, and the entire increase in [Ca2+]i was due to the influx of Ca2+. This progesterone-mediated response displayed different steroid receptor characteristics since the very potent inhibitors of genomic progesterone responses, RU38486 and ZK98.299, were very ineffective at inhibiting the progesterone-mediated increase in [Ca2+]i. Also the synthetic progestins megestrol, medroxyprogesterone acetate, norgestrel, norethynodrel, norethindrone, R5020, and cyproterone acetate did not mimic the effects of progesterone to increase [Ca2+]i. It is proposed that a distinct nongenomic cell surface receptor for progesterone exists in human sperm

    Progesterone and 17 α-Hydroxyprogesterone: Novel Stimulators of Calcium Influx in Human Sperm

    Get PDF
    Progesterone and 17 alpha-hydroxyprogesterone (but not other steroids such as testosterone, corticosterone, beta-estradiol, estrone, dehydroepiandrosterone, 20 alpha-hydroxypregnen-3-one, androstenedione, and pregnenolone) were shown to cause an immediate increase, in free cytosolic calcium ([Ca2+]i) in both capacitated and noncapacitated human sperm, using the fluorescent indicator fura 2. Significant increases in [Ca2+]i were observed with 10 ng/ml progesterone, while maximum effects were seen with 1 microgram/ml progesterone. Two other steroids 11 beta-hydroxyprogesterone and 5 alpha-pregnane-3,20-dione exhibited significant activity to increase [Ca2+]i. This increase in [Ca2+]i elicited by progesterone was entirely due to Ca2+ influx from the extracellular medium since the increase in [Ca2+]i was blocked by the Ca2+ chelator EGTA (2.5 mM) and the Ca2+ channel antagonist La3+ (0.25 mM) when added to the medium containing 2.5 mM Ca2+. Progesterone also stimulated the uptake of Mn2+ into sperm as measured by the quenching of fura 2 fluorescence. Progesterone has been found in human follicular fluid at levels capable of stimulating increases in [Ca2+]i. The similarities in responses induced by human follicular fluid and progesterone an increase in [Ca2+]i, and hence the acrosome reaction, is progesterone and/or 17 alpha-hydroxyprogesterone. Progesterone (1 microgram/ml) did not increase [Ca2+]i in somatic cells such as adipocytes, hepatocytes, Balb/c 3T3 cells, normal rat kidney, or DDT1 MF-2 cells. The effects of these progestins to increase [Ca2+]i, by activating a receptor-operated calcium channel, is the first report of such an activity in sperm. This phenomena possibly opens up a new field of steroid action in the area of sterility, fertility, and contraception at the level of the sperm

    Stimulation of Capacitative Calcium Entry in HL-60 Cells By Nanosecond Pulsed Electric Fields

    Get PDF
    Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (similar to100 nM), while the uptake of propidium iodide was absent. This suggests that increases in intracellular calcium were not because of plasma membrane electroporation. nsPEF and the purinergic agonist UTP induced calcium mobilization in the presence and absence of extracellular calcium with similar kinetics and appeared to target the same inositol 1,4,5-trisphosphate- and thapsigargin-sensitive calcium pools in the endoplasmic reticulum. For cells exposed to either nsPEF or UTP in the absence of extracellular calcium, there was an electric field-dependent or UTP dose-dependent increase in capacitative calcium entry when calcium was added to the extracellular media. These findings suggest that nsPEFs, like ligand-mediated responses, release calcium from similar internal calcium pools and thus activate plasma membrane calcium influx channels or capacitative calcium entry

    Discriminative Insulin Antagonism of Stimulatory Effects of Various cAMP Analogs on Adipocyte Lipolysis and Hepatocyte Glycogenolysis

    Get PDF
    Although insulin effectively blocked hormone-stimulated glycerol output in adipocytes or phosphorylase activation in hepatocytes, the inhibitory effect of insulin on cAMP analog-stimulated cells depended on the cAMP analog used. Of the 20 analogs tested in adipocytes and 13 tested in hepatocytes, the effects of about half of them were effectively blocked by insulin, whereas the effects of many of them were not inhibited at all. In order to approach the explanation for this discriminative insulin action, the inhibitory effects of insulin on the responses to the analogs in the intact cells were correlated with the in vitro cAMP analog specificity for the hepatocyte cAMP-dependent protein kinase isozymes and the low K(m), hormone-sensitive phosphodiesterases from both cell types. No correlation was found between insulin resistance of analog-stimulated hepatocyte phosphorylase and the concentration of analog required in vitro for half-maximal activation of either type I or type II cAMP-dependent protein kinase from hepatocytes. However, a good correlation was found between insulin resistance of cAMP analog-stimulated responses and the analog I50 values for the phosphodiesterase from both cell types. Using a new method capable of measuring hydrolysis at low analog concentrations, several of those analogs which had relatively low, but not high, phosphodiesterase I50 values were shown to be directly hydrolyzed by the low K(m) adipocyte phosphodiesterase. The insulin inhibition of cell responses when stimulated by hydrolyzable analogs, but not by poorly hydrolyzable analogs, is best explained by insulin stimulation of the low K(m) phosphodiesterases from both cell types

    Mode mixing and losses in misaligned microcavities

    Full text link
    We present a study on the optical losses of Fabry-P\'erot cavities subject to realistic transverse mirror misalignment. We consider mirrors of the two most prevalent surface forms: idealised spherical depressions, and Gaussian profiles generated by laser ablation. We first describe the mode mixing phenomena seen in the spherical mirror case and compare to the frequently-used clipping model, observing close agreement in the predicted diffraction loss, but with the addition of protective mode mixing at transverse degeneracies. We then discuss the Gaussian mirror case, detailing how the varying surface curvature across the mirror leads to complex variations in round trip loss and mode profile. In light of the severe mode distortion and strongly elevated loss predicted for many cavity lengths and transverse alignments when using Gaussian mirrors, we suggest that the consequences of mirror surface profile are carefully considered when designing cavity experiments.Comment: 16 pages, 12 figure

    Regulation of Intracellular Calcium Concentration by Nanosecond Pulsed Electric Fields

    Get PDF
    Changes in [Ca2+]i response of individual Jurkat cells to nanosecond pulsed electric fields (nsPEFs) of 60 ns and field strengths of 25, 50, and 100 kV/cm were investigated. The magnitude of the nsPEF-induced rise in [Ca2+]i was dependent on the electric field strength. With 25 and 50 kV/cm, the [Ca2+]i response was due to the release of Ca2+ from intracellular stores and occurred in less than 18 ms. With 100 kV/cm, the increase in [Ca2+]i was due to both internal release and to influx across the plasma membrane. Spontaneous changes in [Ca2+]i exhibited a more gradual increase over several seconds. The initial, pulse-induced [Ca2+]i response initiates at the poles of the cell with respect to electrode placement and co-localizes with the endoplasmic reticulum. The results suggest that nsPEFs target both the plasma membrane and subcellular membranes and that one of the mechanisms for Ca2+ release may be due to nanopore formation in the endoplasmic reticulum

    Efficient operator method for modelling mode mixing in misaligned optical cavities

    Full text link
    The transverse field structure and diffraction loss of the resonant modes of Fabry-P\'erot optical cavities are acutely sensitive to the alignment and shape of the mirror substrates. We develop extensions to the `mode mixing' method applicable to arbitrary mirror shapes, which both facilitate fast calculation of the modes of cavities with transversely misaligned mirrors and enable the determination and transformation of the geometric properties of these modes. We show how these methods extend previous capabilities by including the practically-motivated case of transverse mirror misalignment, unveiling rich and complex structure of the resonant modes.Comment: 17 pages, 7 figure

    Short-Term Feedback Regulation of cAMP by Accelerated Degradation in Rat Tissues

    Get PDF
    A recent study showed that cAMP analogs lowered cAMP levels in rat hepatocytes. The present work demonstrates that cAMP analogs also lowered cAMP in a rapid, concentration-dependent manner in heart and fat cells. In order to determine if the cAMP-dependent protein kinase mediated this effect, techniques were developed to assay the protein kinase activity ratio in hepatocytes treated with cAMP analogs. The activation of protein kinase and phosphorylase in hepatocytes by 8-pClΦS-cAMP (where 8-pClΦS- indicates 8-parachlorothiophenyl-) was concentration-dependent and occurred in parallel to proportionate decreases in cAMP. More than 20% of the cAMP binding sites on the protein kinase were unoccupied at concentrations of 8-pClΦS-cAMP that produced maximal cAMP lowering. Thus, the possibility that 8-pClΦS-cAMP lowered cAMP by displacing it from protein kinase binding sites, making it available for hydrolysis, seemed unlikely. In adipocytes, the lowering of cAMP by 8-pClΦS-cAMP occurred in parallel with increases in lipolysis and activation of low K(m) phosphodiesterase, suggesting that the phosphodiesterase was responsible for the cAMP lowering. Further evidence for this assertion was the finding that in hepatocytes preloaded with low concentrations of 8-pClΦS-cAMP, glucagon lowered 8-pClΦS-cAMP by about 50%, an amount similar to the cAMP lowering observed with 8-pClΦS-cAMP treatment. The results were consistent with a cAMP-dependent protein kinase-catalyzed activation of a phosphodiesterase and suggested that 8-pClΦS-cAMP-mediated hydrolysis of cAMP mimicked a physiologically significant response. The observation of this phenomenon in several tissues further suggested that it may a general mechanism for dampening and terminating the hormonal signal through accelerated degradation of cAMP
    • …
    corecore