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Changes in [Ca2+]i response of individual Jurkat cells to nanosecond pulsed electric fields (nsPEFs) of 60 ns
and field strengths of 25, 50, and 100 kV/cm were investigated. The magnitude of the nsPEF-induced rise in
[Ca2+]i was dependent on the electric field strength. With 25 and 50 kV/cm, the [Ca2+]i response was due to
the release of Ca2+ from intracellular stores and occurred in less than 18 ms. With 100 kV/cm, the increase in
[Ca2+]i was due to both internal release and to influx across the plasma membrane. Spontaneous changes in
[Ca2+]i exhibited a more gradual increase over several seconds. The initial, pulse-induced [Ca2+]i response
initiates at the poles of the cell with respect to electrode placement and co-localizes with the endoplasmic
reticulum. The results suggest that nsPEFs target both the plasma membrane and subcellular membranes and
that one of the mechanisms for Ca2+ release may be due to nanopore formation in the endoplasmic
reticulum.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Nanosecond pulsed electric fields (nsPEFs) have demonstrated the
ability to induce a variety of responses in cells such as increases in
intracellular free Ca2+ ([Ca2+]i), caspase activation, phosphatidylser-
ine (PS) externalization, and DNA damage [1–7]. Classical electro-
poration uses field strengths of several hundred volts per centimeter
for microsecond to millisecond durations to allow passage of normally
non-permeable molecules across the plasma membrane. In compar-
ison, nsPEF-exposures use much higher field strengths of several
hundred kV/cm for durations often shorter or on the order of the
charging time of the plasma membrane (typically 100–300 ns). The
rise time of conventional electroporation pulses alone is often longer
than the entire pulse duration of nsPEFs. For long pulse durations, ions
accumulate along the plasma membrane, and a counterfield develops
inside the cell that effectively shields the organelles from further
exposure to the applied electric field. As a result, only the outer
membrane is affected by the prolonged exposure and pores form once
a cell-characteristic threshold voltage is reached [8–10]. The time
constant for the charging process depends on cell size and
conductivity of the suspension media [11,12]. For a spherical cell,
10 μm in diameter, suspended in a physiological buffer, it is on the
order of 75 ns. Conversely, within the short duration of nsPEF
exposures, organelle membranes will be affected in the same way as
the outer cell membrane. For the high electric field strengths applied
with nsPEFs, transmembrane voltages reach values of more than 1 V

during the exposure and pore formation is also likely along internal
membranes [13]. In addition to this direct effect on membrane
structure, the intense fields allegedly affect voltage-gated channels
and other protein structures in the membrane [14,15]. Ca2+ stores,
such as in the endoplasmic reticulum (ER) and mitochondria, are
presumably targeted by the same mechanisms, causing the release of
Ca2+ into the cytosol [16]. Therefore, changes in [Ca2+]i are among the
first physiological responses of the cell to nsPEFs.

In the present study, we explored changes in [Ca2+]i concentra-
tions in Jurkat cells which maintain a baseline [Ca2+]i of approxi-
mately 100 nM [17]. The Ca2+ stored in organelles for signaling events
is approximately 30–300 μM [18] and can be released in small
amounts, triggering local cellular events, and/or generating Ca2+

waves [19,20]. Cell functions that are Ca2+-mediated are dependent
on varying spatial and temporal [Ca2+]i concentrations. Examples of
Ca2+-mediated cell events include fertilization, muscle contraction,
and apoptosis (programmed cell death) [17,21–23].

Applying nsPEFs increases [Ca2+]i in a variety of cell types. A field
strength-dependent synchronized response was first shown in Jurkat
(lymphoid leukemia cell line) and HL-60 (myeloid leukemia cell line)
cells [24,25]. It was concluded that both Ca2+ influx and intracellular
release contributed to the observed transients. In HL-60 cells, a pulse-
induced [Ca2+]i increase mimicked a hormone-stimulated increase
in [Ca2+]i, where the magnitude of the response was reduced in
the absence of extracellular Ca2+ and the pulse-induced increase in
[Ca2+]i reached a peak in approximately 1 s [26].

Jurkat cells loaded with the Ca2+ sensitive fluorescent indicator
Calcium Green showed increases in [Ca2+]i after ten 30-ns pulses of
2.5 kV/cm [4]. The response was recorded with a resolution limit of
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100 ms. The same cells did not lose membrane integrity as confirmed
by the lack of propidium iodide uptake, which indicates that the
increase in [Ca2+]i was due to internal Ca2+ release rather than Ca2+

influx. The experiments so far suggest that in the presence of
extracellular Ca2+, the majority of the increase in [Ca2+]i following
nsPEF was due to Ca2+ influx. However, in the absence of extracellular
Ca2+, the increase in [Ca2+]i was generated from intracellular Ca2+

stores, most likely by electroporation of intracellular membranes. The
influx of Ca2+ from the extracellular medium is through non-specific
nanopores in the plasma membrane [27] or through the opening of
Ca2+-release-activated-channels (CRAC) on the membrane (termed
store-operated Ca2+ entry) [17].

Thus far, the temporal Ca2+ response to nsPEF exposures has
been observed on a 100-ms time scale, which was not fast enough to
allow observation of the initial Ca2+ release [4]. Within this time
frame, it was also not possible to determine the source of the pulse-
induced Ca2+ response. Only instantaneous and uniform increases in
[Ca2+]i across the entire cell volume were reported due to nsPEF
stimulation [4]. Increasing the temporal and spatial resolution of
[Ca2+]imeasurementswill identify the location of the Ca2+ release and
the underlying pathways behind the pulse-induced Ca2+ response. To
this end, our study (1) investigated changes in [Ca2+]i dependent upon
field strength and the presence of extracellular Ca2+, (2) resolved
nsPEF-induced [Ca2+]i responses, comparing the kinetics and magni-
tude to spontaneous [Ca2+]i transients, and (3) determined the origin
of the Ca2+ release site.

2. Methods

2.1. Cell culture

Jurkat cells obtained fromAmerican Type Culture Collection (ATCC,
Manassas, VA) were cultured in 75-cm2

flasks in RPMI 1640 medium
(Mediatech Cellgro, Herndon, VA) supplemented with 10% fetal
bovine serum (Atlanta Biologicals, Norcross, GA), L-glutamine
(2.0 mM), penicillin (100 U/ml), streptomycin (100 μg/ml) (Media-
tech Cellgro, Herndon, VA) and incubated at 37 °Cwith 5% CO2. Cells in
log-phase were removed from the culture and re-suspended in a
modified Tyrode's buffer composed of 145.0 mM NaCl, 5.0 mM KCl,
0.4 mM NaH2PO4, 1.0 mM MgSO4, 6.0 mM glucose, 5.0 mM HEPES
(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid) with or with-
out 1.5 mM CaCl2, and with enough NaOH to bring the pH to 7.4 [13].
The conductivity and osmolarity of the medium were 14.07 mS/cm
and 285.5 mOsm respectively. In experiments with Ca2+-free buffer,
CaCl2 was omitted from the suspension solution and 1.5 mM EGTA
(Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N′,N′-tetraacetic
acid) was added to chelate residual Ca2+.

2.2. Cell staining

Cells were loaded with the Ca2+ fluorophore fluo-4, by incubating
with 4 μM fluo-4, AM for 30min. Excess un-hydrolyzed fluo-4, AMwas
removed by centrifuging the cell suspension at 50 ×g for 5 min and re-
suspending the cells in fresh buffer. To locate the position of the
endoplasmic reticulum, cells were stained with 1 μM brefeldin A,
BODIPY® 558/568 for 30 min then centrifuged at 50 ×g for 5 min and
re-suspended in fresh buffer. Cell membrane integrity was assessed by
adding 10 μg/ml of propidium iodide before exposure to nsPEFs and
measuring fluorescence after exposure using microscopy.

2.3. Pulse chamber

Electric field pulses were administered to cells between plane-
parallel electrodes of 10 mm length, a depth of 10–15 μm, and a
distance across the gap between the electrodes of 80 μm. The
microcuvettes were provided to us by Dr. John Booske (Department

of Electrical Engineering, University of Wisconsin, Madison, WI).
Electrodeswere nickel-plated onto 1×3×0.04 in. microscope slides or
no. 1–1/2 covers (22×50 mm) that were pre-coated with a 100 nm
gold layer on top of a 5 nm adhesion layer. During electroplating, the
gap was kept defined by a barrier of photoresist, which was deposited
prior in a photolithographic process. The photoresist was subse-
quently removed by acetone and the remainingmetal layers in the gap
by a gold etchant and buffered hydrofluoric acid, respectively [28].

An aliquot of stained cells was pipetted between the 80 μm
electrode gap. A coverslip was placed on the gap and the slide placed
in the pulse chamber set up to deliver a square wave pulse, similar to
that described previously [13]. We did not use any agent such as poly-
L-lysine to fix the cells to the slide since the cells did not move during
the time course of the experiments. The electrode thickness was
approximately 15 μm and the diameter of a typical Jurkat cell is
approximately 11.5 μm [29].

2.4. Experimental setup

A Blumlein line circuit was used to deliver 60-ns rectangular
pulses with a rise time of 2–4 ns to cells in suspension [30]. The pulse
generator and the confocal system were synchronized such that a
delay generator (Berkeley Nucleonics BCN555, San Rafael, CA)
initiated the start of time-lapse movie 10 s before the application of
the first pulse. If a second pulse was applied, it was triggered by the
delay generator 300 s later. For the application of a single pulse, this
time was set to 10 s. The delay generator and image acquisition were
controlled by a MATLAB (The MathWorks, Natick, MA) program.

2.5. Fluorescence microscopy and image analysis

Time-lapse images were recorded using the UltraVIEW Rapid
Confocal Imager (Perkin Elmer,Waltham,MA), a spinning-disc, confocal
microscope attached to an Olympus IX71 inverted microscope, capable
of taking up to 360 frames per second. The confocal unit was connected
to a computer with the Perkin Elmer UltraVIEW ERS software installed,
which provides an interface between the excitation laser, camera
controls, and the visual display. The Argon/Krypton ion laser (Melles
Griot, Carlsbad, CA) 643-Y-AO2, attached to the system, lased at
wavelengths 488, 568, and 647 nm. For experiments with a time scale
of 1 s per framewith 100ms exposure, a 60× long-pass air objectivewas
used, but for the smaller time scale of 18 ms per frame with a 5-ms
exposure, a 60× oil objective was used. Changes in fluorescence were
derived for individual cells (region of interest) from the recorded grey-
scale values with the analysis option of UltraVIEW ERS. For the
statistical treatment, the results were treated with Microsoft Excel
2003 — Analysis ToolPak (Microsoft Corporation, Redmond, WA).

3. Results

3.1. Physiological [Ca2+]i fluctuations

To characterize the dynamics of the [Ca2+]i response to nsPEF
exposure, Jurkat cells were stimulated with 60 ns duration pulses of
either 25, 50, or 100 kV/cm field strength in the presence (left
column) and absence (middle and right column) of extracellular
Ca2+ (Fig. 1). Fluorescence intensity changes expressed in grey level
were obtained for each cell in the field of view. The recordings were
started before the exposure to capture a baseline fluorescence value
for normalization and then continued for 10–15 min (Fig. 1). Control
cells exhibited spontaneous surges (oscillations) in [Ca2+]i in the
presence or absence of extracellular Ca2+ (Fig. 1, panels A and B). As
shown in Fig. 2, regardless of extracellular Ca2+, the maximum
increase in fluorescence reached values 1.35–1.40 fold above baseline
values. The peak value was reached in approximately 4 s and [Ca2+]i
levels returned to values comparable to the initial signal within 1.5–
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5 min. The spontaneous response was characterized by an initial
moderate increase in [Ca2+]i as seen in Fig. 3A. Once the
fluorescence signal reached about 10% of the peak value, the rate
of change increased rapidly. The time from the onset of this steep
rise until the maximum was reached is reported in Fig. 2.

Similar [Ca2+]i transients lasting approximately 100 s, have been
described [19,20]. Periodically, the fluorescence intensity, after falling
to values around baseline, started to gradually increase again,
although at a rate much slower than the initial rise (data not
shown). Antigen receptor-stimulated release of inositol triphosphate

Fig. 1. Typical fluorescence recordings of fluo-4 loaded Jurkat cells stimulated with a 60-ns pulsed electric field. Images of cells were taken every second with a 100-ms exposure time
and stimulated with a single pulse at the 10th second (first and second column), and then exposed to an additional pulse at the 300th second (third column). Individual responses
vary greatly between cells. (Note considerable deviations from the averages shown in Fig. 2 for outliers in particular for the unstipulated responses of the control groups.)
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(IP3) in Jurkat cells triggers oscillations in [Ca2+]i [e.g. 31,32] with a
slow rise similar to that shown in this study (Fig. 1).

3.2. Field strength dependent Ca2+ response

Cells exposed to an electric field of 12 kV/cm for 60 ns exhibited no
measurable increase in [Ca2+]i (data not shown). The application of
25 kV/cm or more led to an immediate increase in [Ca2+]i in all
exposed cells. For a 25 kV/cm field exposure the peak values were 1.25
times higher than the baseline value and were reached between 2.6
and 3.0 s following stimulation (Fig. 2). The fluorescence signal
returned to values measured before the exposure in approximately
30 s. A dependency of the response on extracellular Ca2+ was not
observed. Compared to the spontaneous response, the nsPEF
stimulated response had a lower peak value, was reached in a shorter
time, and was not preceded by a gradual increase.

Qualitatively, the response to 50 kV/cm was similar to the 25 kV/
cm response however the peak was 1.7 times higher than baseline
values. The maximum fluorescence response was reached 1.9–2.0 s
after the pulse, which was slightly faster than measured with the
lower field strength. No dependency on extracellular Ca2+ was
observed. The fluorescence signal returned to baseline within 1 min,
which was slower than the return using 25 kV/cm, but still much
faster than the physiological spontaneous response. For 25 and 50 kV/
cm conditions, the cells showed no lasting effect of the nsPEF exposure
since their [Ca2+]i levels returned to pre-pulse levels within several
minutes.

The response to a 100 kV/cm pulse was distinctly different from
the exposures at lower field strengths. In the presence of
extracellular Ca2+, cells exhibited a fast increase in fluorescence
intensity within 2 s to values approximately twice as high as the
baseline value. This rapid rise was followed by a more gradual
increase and a maximum fluorescence value of 2.3 times above the
baseline in 23 s. The slow secondary increase in fluorescence was
then followed by an equally slow decrease. The fluorescence signal
leveled off after several minutes, however, at values higher than
baseline values. For most cells, the fluorescence signal then suddenly

dropped from this value in 30–60 s to values that were even lower
than the initial baseline values. With extracellular Ca2+ present,
almost every cell followed this pattern. The time at which cells
suddenly lost fluorescence varied, and was observed as early as
3 min after nsPEF exposure. The sudden drop in fluorescence was
usually preceded by a small spike in fluorescence.

In the absence of extracellular Ca2+, the initial rapid increase in
fluorescence was similar to the response of cells exposed to 100 kV/
cm in the presence of extracellular Ca2+. A peak value 1.9 times higher
than the baseline level was reached in approximately 2.4 s. However,
this peak value was not followed by a further gradual increase.
Consequently themaximum fluorescence changes in the presence and
absence of extracellular Ca2+ for the 100 kV/cm field exposure were
significantly different from each other (Fig. 2). The subsequent
decrease in fluorescence intensity was again similar for both
conditions. In this process, occasionally, the fluorescence intensity of
individual cells dropped to values below the pre-exposure values after
several minutes. The drop took about 15–20 s in the absence of Ca2+

and 2–3 times longer in its presence. In the latter case it was preceded
by a small spike in fluorescence.

Another distinct difference observed only for exposures of 100 kV/
cm was the absence of any spontaneous physiological response
following the pulse induced response. When a second pulse of the
same field strength was applied, 5 min after the first exposure (Fig. 1,

Fig. 3. In panel A, the time course for the spontaneous increases in [Ca2+]i is shown for 5
representative cells. In panel B, the time course for the increase in [Ca2+]i induced by 25,
50, and 100 kV/cm pulses is shown for two representative cells at each voltage. The
response to the application of a 60-ns pulsed electric field was recorded taking images
every 18ms with an exposure time of 5 ms per image. The time scales between panels A
and B differ by a factor of forty.

Fig. 2. Statistical analysis of average fluorescent signal magnitude (in percent above the
baseline level) and time to reach this value from baseline values for recordings shown in
Fig. 1. For the slow increase in the control groups, the time for the increase was
determined as the time it took to reach the highest value from 10% of this value. In
comparison, the increase of the response observed with nsPEF-stimulus occurred
immediately within the limits of the temporal resolution. The data analysis is based on
values from different experiments with at least 30 cells in total for each condition. The
average response for different experiments was computed including only values within
a confidence interval of two standard deviations. For 100 kV/cm the response in the
presence of Ca2+ was statistically significantly stronger than without Ca2+.
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right column), even for cells exposed to 100 kV/cm another increase
in [Ca2+]i was observed. Experiments with a second pulse were
conducted in the absence of extracellular Ca2+ only, and for all
conditions, the second response was lower in magnitude. For lower
field strengths, the normal spontaneous behavior of the cell was
unchanged by subsequent exposures, but was absent after the ap-
plication of a subsequent 100-kV/cm pulse. Furthermore, the like-
lihood of the fluorescence signal to drop suddenly after exposure
increased with the number of pulses applied. For the conditionwhere
5 pulses were applied within 10 s, every cell showed a drop in
fluorescence within a few minutes (data not shown).

3.3. Kinetics of nsPEF induced [Ca2+]i response

The increases in [Ca2+]i levels following the application of nsPEFs
were previously reported as occurring “as fast as they can be
observed”, which was defined by a temporal resolution of 100 ms
[4]. However, recent simulation studies predict the release of Ca2+

from internal stores through pulse-induced pores, reaching saturation
thresholds in a few microseconds [33]. To further define the
mechanisms leading to increased [Ca2+]i after the exposure to nsPEFs,
we enhanced the temporal resolution. Time-lapse movies were
recorded with a 5-ms exposure every 18 ms for 5 s. The pulse
generator and the recording software were synchronized and a pulse
was applied 1 s after recording had started. The experiments were
conducted in the absence of extracellular Ca2+. The traces in Fig. 3A
show, on an expanded time scale, several individual cell fluorescence
signals in control cells similar to the traces presented in Fig.1B. Each of
the data points, taken 1 s apart, represents the fluorescence value
collected for a camera exposure of 100 ms. For graphical presentation,
the individual signals were shifted in time from their original
recording and overlaid, with time zero defined as the time when
they have reached 10% of their maximum value. It typically took
several seconds until the fluorescence signal increased to this value
from baseline. Following this slow onset, the rate of the fluorescence

change rapidly increased, but it still took approximately 4 s to reach
the peak value (Fig. 2). In comparison, the pulse induced responses
were much faster. Examples of responses to different applied electric
fields are shown in Fig. 3B, note that the time interval shown in panel
B is forty times shorter than the one shown in panel A. A slow rise, as
observed with the physiological responses, was not observed. For the
applications of 50 kV/cm and 100 kV/cm fields, the signal increased
1.2 times higher than baseline values within approximately 36 ms.
Physiological responses took 5000 times longer (3–4 s) to reach
similar fluorescence values. Although the rate of fluorescence change
was different for a field strength of 25 kV/cm, compared to the higher
electric field strengths, it was not significantly different from the slow
rise of a physiological response. Altogether, these results demonstrate
that a 60 ns pulse with an electric field amplitude at or above 50 kV/
cm stimulates a much faster Ca2+ response than any physiological
stimulus.

3.4. Origin of pulse induced increase in [Ca2+]i

A series of images takenwith a 5 ms exposure every 18 ms allowed
us to spatially resolve the increase in Ca2+ concentrations and identify
potential intracellular sources. Previous studies were only able to
report a homogeneous increase throughout the cell [4]. Staining with
the fluorescence indicator brefeldin A, BODIPY® 558/568 [34]
indicates the location of the endoplasmic reticulum (ER) (Fig. 4,
panel E). In the absence of extracellular Ca2+, there was an increase in
[Ca2+]i emanating from the site of the ER at the poles of the cells i.e.
along the direction of the electric field. The poles were affected first
and more intensely than the equatorial plane. The staining of the ER
was co-localized with the fluo-4 fluorescence increase observed after
nsPEF stimulation. Subsequently, the fluorescence intensity increased
across the cell reaching homogeneous levels within 54 ms (Fig. 4,
panel D). In comparison, recordings of spontaneous Ca2+ signals with
the same fast resolution show a gradual and even increase throughout
the cell, over a longer period of time, with no specific localization for
the origin of the Ca2+ signal (data not shown).

3.5. Fluo-4 fluorescence response and membrane integrity

The sudden drop in fluorescence levels observed after the
exposure to 100 kV/cm, independent of the presence of extracellular
Ca2+ (Fig. 1I and J), indicated a loss of membrane integrity. Cells
loaded with fluo-4 and exposed, in the presence of extracellular
propidium iodide (PI), to 60-ns pulses of 100 kV/cm did not show an

Fig. 4. Jurkat cells loaded with fluo-4 were imaged every 18 ms with a 5-ms exposure
after exposure to a 60-ns pulse of 100 kV/cm (panel A). Image A was taken before
exposure. Image B was taken at 18 ms, Image C at 36 ms and Image D at 54 ms. Cells
were stained with brefeldin A, BODIPY® 558/568 to locate the endoplasmic reticulum
(Image E).

Fig. 5. Jurkat cells loaded with fluo-4 were exposed to a 60-ns pulsed electric field of
100 kV/cm in the presence of extracellular Ca2+ and the membrane integrity marker
propidium iodide.
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immediate uptake of this otherwise membrane impermeant dye
(Fig. 5). However, when a sudden drop in the fluo-4 fluorescence was
observed, PI was observed to be simultaneously and rapidly taken up
by the cell (Fig. 5). In the presence of extracellular Ca2+, this delayed
rapid decrease was typical for almost every cell after the application of
only one pulse. In the absence of extracellular Ca2+, up to five pulses in
close succession of 1 to 2 s had to be applied to observe this rapid drop
in fluo-4 signal (data not shown). In short, whenever this fluorescence
decrease occurred, simultaneous uptake of PI was always observed.

4. Discussion

Thedata presented show that thensPEF-induced increase in [Ca2+]i
is an immediate, electric field strength-dependent, response (Fig. 1).
The presence or absence of extracellular Ca2+ was irrelevant for
responses to electric fields of 25 and 50 kV/cm (Fig. 2). The signal rises
faster to its peak value than for the spontaneous [Ca2+]i responses and
also decreased faster to baseline values. After nsPEF exposure, normal
fluctuations in [Ca2+]i occurred again. The cell response was different
for a field of 100 kV/cm when compared to lower field strengths and
with respect to the presence of extracellular Ca2+. Without extra-
cellular Ca2+, the initial signal was similar to the response for lower
fields. However, [Ca2+]i levels did not return to baseline values and no
further increase above this value could be observed unless a second,
similar pulse was applied. The [Ca2+]i rise in the presence of
extracellular Ca2+ reached a considerably higher peak level much
later. Another characteristic of the response to the100-kV/cmstimulus
was a delayed (within 15 min) fast drop in fluo-4 fluorescence, which
could be seen for almost every cell when extracellular Ca2+ was
present, and also for some cells when extracellular Ca2+ was absent.

The [Ca2+]i response, observed in the absence of external Ca2+ and
for lower electric fields of 25 and 50 kV/cm, suggests that Ca2+ was
released from internal stores. For 25 kV/cm a second pulse seemed to
lead to amplitudes that were only slightly lower than for the first
exposure. However, a second pulse of 50 kV/cm was not followed by
the same increase as the first. This result indicates an inability to
release more Ca2+ upon this second stimulus, either because the cell
had become less sensitive to the exposure, or Ca2+ stores were
depleted. This threshold seems to be overcome by increasing the field
strength to 100 kV/cm. The significantly larger signal amplitude, in
the presence of extracellular Ca2+, was caused by the influx of Ca2+.
This hypothesis was supported by the slower increase to this higher
value, which followed the initial rapid development similar to the
response observed with no extracellular Ca2+. How Ca2+ entered the
cell is not completely understood. A likely explanation is that nsPEF
causes the formation of nanopores which are large enough to allow
Ca2+ to enter the cell but are too small for the uptake of larger
molecules such as PI [27,35] or for fluo-4 to flow through. In our
experiments, no observed increase in PI fluorescence while intracel-
lular fluo-4 signals were high, supports this explanation (Fig. 4B).
Conversely, the uptake of PI several minutes after 100 kV/cm nsPEF
exposure correlated well with a sharp decrease in fluo-4 fluorescence
below baseline levels, indicating that large pores had opened in the
membrane as a secondary response to the exposure (Fig. 4B). Efflux
from the cell and dilution of fluo-4 in the large extracellular volume
would account for the decline in fluorescence signal. The lack of
spontaneous fluctuations in [Ca2+]i observed after the pulse at this
field strength indicates that there was significant damage to the cell
that prohibited normal Ca2+ homeostasis events to occur.

We recognize the possibility that the presence of EGTA in the low
Ca2+ condition may lessen the ability of nsPEF to electroporate the
plasma membrane. Chelators have been shown to alter the stability
and rigidity of membranes (this is based on studies performed in red
blood cells) [36]. However, since we still observe nsPEF induced
increases in [Ca2+]i in the EGTA condition, this implies that the nsPEF
is affecting intracellular Ca2+ stores. Even if there was no electro-

poration of the plasma membrane in the EGTA condition this would
not influence our results. Studies in our laboratory showed that by
using patch clamp techniques, the permeabilization of GH3, PC-12 and
Jurkat cells was not influenced by 10 mM EGTA [14].

In addition to nanopores allowing the influx of Ca2+ following
nsPEF-stimulation, an alternative pathway for Ca2+ entry could be the
activation of Ca2+-release-activated-channels (CRAC) in the plasma
membrane. This could be achieved with field strengths of 100 kV/cm
which are large enough to trigger capacitive Ca2+ entry through the
initial release of Ca2+ from internal stores [26,37]. The results for
lower field strengths show that the electric fields were affecting
internal stores and leading to increased [Ca2+]i. The endoplasmic
reticulum was expected to be the most likely source for this Ca2+

increase and our fast time resolution images support this assumption
(Fig. 4A).

Spontaneous increases in [Ca2+]i took approximately 4 s to reach a
maximum and consequently could easily be resolved with an image
taken every 18 ms. It is obviously a response, with extracellular Ca2+

present, that involves the opening of Ca2+ channels in the plasma
membrane, which are known to occur on the order of milliseconds
[38]. In comparison, the initial temporal response of the pulse-
induced Ca2+ release was found to occur much faster. The change in
[Ca2+]i for cells pulsed at 50 and 100 kV/cm showed a fast rise to
values comparable to spontaneous oscillation peak amplitudes within
the first 100 ms of exposure (often within 2–3 frames, i.e., 54 ms).
Even on this time scale, the onset of the increase appears to be
instantaneous with no indication of a gradual activation of ion
channels. For 25 kV/cm the increase in [Ca2+]i was too slow to allow
us to determine with statistical significance if the induced response
differs from the response of cells in the control. This suggests that
either a fast rise in Ca2+ is triggered in less than 18 ms, or fluo-4
cannot bind quickly enough to the pulse-mobilized Ca2+, although
fluo-4 operates within milliseconds [39].

These results suggest that the mechanism by which nsPEFs induce
increases in [Ca2+]i may not be mediated by IP3 and may not be
following a physiological pathway. However, a contribution to
increased [Ca2+]i from internal stores through directly activated
channels cannot be excluded. Recent experimental results and
simulations suggest that an instantaneous and substantial increase
in [Ca2+]i observed on a millisecond timescale is caused by the
formation of pores. These pores form as a result of rapid changes in
membrane potentials that surpass the membrane threshold due to
applied high electric fields [27,40]. For the plasmamembrane, changes
in membrane potential values of more than 1 V have been observed
within a few nanoseconds into the application of a 60 ns pulsed
electric field of 100 kV/cm [13]. The voltage across the membrane
rises further, to values of 1.4 V, in 20 ns before it gradually decreases.
The decrease has been associated with the exchange of ions across the
membrane. Since the pulse duration is much shorter than the
charging time of the cell, the interior of the cell is not yet shielded
from the external field and organelle membranes are charged in a
manner similar to the outer membrane [41,42]. In fact, for their
smaller size and higher membrane curvature, they are expected to be
even easier to porate [43]. We therefore believe that Ca2+ is released
from the endoplasmic reticulum through pores that were formed
during the application of the electric field. Differences in amplitudes
of the [Ca2+]i signals for different field strengths can be explained as a
result of different pore densities. This initial process might also trigger
the eventual opening of CRAC channels. The hypothesis of pores
enabling the outflow of Ca2+ is further supported by the observed
initial release from the endoplasmic reticulum compartment at the
poles (Fig. 4B). Stronger or initial effects along the direction of the
electric field are also known for electroporation pulses [8,44,45], and
in this case are ascribed to the highest values of membrane potential
changes where the electric field is perpendicular to the membrane
surface. This typically results in the formation of pores. The similarity
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of this trend with our experiments suggests that with the 60-ns pulse,
the applied electric field reaches into the cell and that pores are
formed at an internal membrane, most likely the ER. This may allow
for the passage of Ca2+, which we observe as an increase in fluo-4
fluorescence intensity. Also, the pulse induced Ca2+ release generally
shows a faster and more exponential decline, rather than a linear
decrease, back to baseline values as seen with the spontaneous
increases (e.g. Fig. 1F and G), which suggests some mechanism other
than the mere opening and closing of Ca2+ channels.

The creation of pores in the outer membrane also seems to be the
primary process for the uptake of Ca2+ from the external medium.
Evidence for the formation of pores in Jurkat cells, following nsPEF
treatment, was previously obtained when the influx of YO-PRO-1 was
observed along with externalization of phosphatidylserine [3]. At the
same time, no PI entered the cells, which supports the theory that
these pores are different than those induced by electroporation pulses,
in particular, that they aremuch smaller and can discriminate between
dyes with similar molecular weights. PI has a Connolly solvent
exclusion volume of 394 Å3 which is slightly larger than YO-PRO-1
which is 355 Å3 (calculated using Chem 3D Ultra version 8.0.3,
CambridgeSoft Corp, Cambridge, MA), which may be a sufficient
difference to account for their different permeabilities through
nanopores. Influxof Ca2+ through nanopores in the plasmamembrane
together with the outflow of Ca2+ from internal stores appears
adequate to activate CRAC channels on the plasma membrane. We
believe that this can be seen in the further 45% increase in [Ca2+]iwhen
extracellular Ca2+ was present (Fig. 1I) from a [Ca2+]i value at 2.0 s,
which was similar to the maximum seenwithout extracellular Ca2+ at
2.4 s (Fig.1J), to a peak levelwhichwas slowly reached at 22.9 s (Fig. 2).

In conclusion, our results confirmmodeling results that predict, for
the exposure to nanosecond pulsed electric fields with field strengths
of several tens of kilovolts per centimeter, the formation of pores in
the plasma and also internal membranes [27,35]. These ‘nanopores’
are too small for larger molecules, such as PI, to pass through but
permit passage of smaller ions like Ca2+. Longer electrical pulses have
been shown to produce primarily large pores in the plasmamembrane
that will permit the introduction of big molecules such as DNA into
cells. However, organelles can be affected as well. Electrical field
pulses of 50-μs durationwere shown to produce reversible breakdown
of plasma membrane and tonoplast membranes as judged by the
influx of extracellular Ca2+ and the release of tonoplast Ca2+ in
aequorin-transformed tobacco cells [46].

For nsPEFs of different pulse durations and field strengths,
combined with multiple exposures, our data suggests the possibility
of activating specific cell responses, such as the expression of
interleukin-2 in Jurkat cells. To this end, it would be of interest to
observe the long-term effects of exposures. For certain pulsed electric
field parameters the induction of apoptosis has already been
demonstrated [47]. Based on our research, the ability to trigger
other Ca2+ controlled responses is likely. For platelets this response
has already been exploited as non-ligand agonist for activation [48].
Therefore, nsPEF stimulation offers a subtle tool to manipulate Ca2+

pathways to obtain a specific desired event. By varying nsPEF
exposures (both energy and pulse duration), it may be possible to
selectively stimulate cell proliferation, expression of interleukin-2, or
apoptosis, by increasing [Ca2+]i to different levels. The regulation of
these processes may ultimately offer new treatment possibilities for
selected medical conditions and, in particular, may open the door to
new cancer treatments, for example, by specifically inducing Ca2+

mediated apoptosis in tumor cells [49].
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