6,610 research outputs found

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio

    Star-forming accretion flows and the low luminosity nuclei of giant elliptical galaxies

    Full text link
    The luminosities of the centers of nearby elliptical galaxies are very low compared to models of thin disc accretion to their black holes at the Bondi rate, typically a few hundredths to a few tenths of a solar mass per year. This has motivated models of inefficiently-radiated accretion that invoke weak electron-ion thermal coupling, and/or inhibited accretion rates due to convection or outflows. Here we point out that even if such processes are operating, a significant fraction of the accreting gas is prevented from reaching the central black hole because it condenses into stars in a gravitationally unstable disc. Star formation occurs inside the Bondi radius (typically ~100pc in giant ellipticals), but still relatively far from the black hole in terms of Schwarzschild radii. Star formation depletes and heats the gas disc, eventually leading to a marginally stable, but much reduced, accretion flow to the black hole. We predict the presence of cold (~100K), dusty gas discs, containing clustered H-alpha emission and occasional type II supernovae, both resulting from the presence of massive stars. Star formation accounts for several features of the M87 system: a thin disc, traced by H-alpha emission, is observed on scales of about 100pc, with features reminiscent of spiral arms and dust lanes; the star formation rate inferred from the intensity of H-alpha emission is consistent with the Bondi accretion rate of the system. Star formation may therefore help suppress accretion onto the central engines of massive ellipticals. We also discuss some implications for the fueling of the Galactic center and quasars.Comment: 13 pages, accepted to MNRA

    On the mean field dynamo with Hall effect

    Full text link
    We study in the present paper how Hall effect modifies the quenching process of the electromotive force (e.m.f.) in Mean Field Dynamo (MFD) theories. We write down the evolution equations for the e.m.f. and for the large and small scale magnetic helicity, treat Hall effect as a perturbation and integrate the resulting equations assuming boundary conditions such that the total divergencies vanish. For force-free large scale magnetic fields, Hall effect acts by coupling the small scale velocity and magnetic fields. For the range of parameters considered, the overall effect is a stronger quenching of the e.m.f. than in standard MHD and a damping of the inverse cascade of magnetic helicity. In astrophysical environments characterized by the parameters considered here, Hall effect would produce an earlier quenching of the e.m.f. and consequently a weaker large scale magnetic field.Comment: 8 pages, 4 figures. Accepted by A&

    Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Full text link
    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.Comment: version in press, Physical Review Letters; 17 pages, 5 figures (includes supplementary material

    A General Approach for Predicting the Behavior of the Supreme Court of the United States

    Full text link
    Building on developments in machine learning and prior work in the science of judicial prediction, we construct a model designed to predict the behavior of the Supreme Court of the United States in a generalized, out-of-sample context. To do so, we develop a time evolving random forest classifier which leverages some unique feature engineering to predict more than 240,000 justice votes and 28,000 cases outcomes over nearly two centuries (1816-2015). Using only data available prior to decision, our model outperforms null (baseline) models at both the justice and case level under both parametric and non-parametric tests. Over nearly two centuries, we achieve 70.2% accuracy at the case outcome level and 71.9% at the justice vote level. More recently, over the past century, we outperform an in-sample optimized null model by nearly 5%. Our performance is consistent with, and improves on the general level of prediction demonstrated by prior work; however, our model is distinctive because it can be applied out-of-sample to the entire past and future of the Court, not a single term. Our results represent an important advance for the science of quantitative legal prediction and portend a range of other potential applications.Comment: version 2.02; 18 pages, 5 figures. This paper is related to but distinct from arXiv:1407.6333, and the results herein supersede arXiv:1407.6333. Source code available at https://github.com/mjbommar/scotus-predict-v

    Dynamos and Chemical Mixing in Evolved Stars

    Full text link
    In low-mass Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars, anomalous mixing must transport material near the hydrogen-burning shell to the convective envelope. Recently, it was suggested that buoyant magnetic flux tubes could supply the necessary transport rate (Busso et al. 2007). The fields are assumed to originate from a dynamo operating in the stellar interior. Here, we show what is required of an α−Ω\alpha-\Omega dynamo in the envelope of an AGB star to maintain these fields. Differential rotation and rotation drain via turbulent dissipation and Poynting flux, so if shear can be resupplied by convection, then large-scale toroidal field strengths of \left\simeq3\times10^4 G can be sustained at the base of the convection zone.Comment: 7 pages, 3 figures. To appear in AIP Proceedings of the IXth Torino Workshop on AGB Nucleosynthesi
    • …
    corecore