26 research outputs found
Modelling environmental DNA transport in rivers reveals highly resolved spatio-temporal biodiversity patterns
The ever-increasing threats to riverine ecosystems call for novel approaches for highly resolved biodiversity assessments across taxonomic groups and spatio-temporal scales. Recent advances in the joint use of environmental DNA (eDNA) data and eDNA transport models in rivers (e.g., eDITH) allow uncovering the full structure of riverine biodiversity, hence elucidating ecosystem processes and supporting conservation measures. We applied eDITH to a metabarcoding dataset covering three taxonomic groups (fish, invertebrates, bacteria) and three seasons for a catchment sampled for eDNA at 73 sites. We upscaled eDNA-based biodiversity predictions to approximately 1900 reaches, and assessed α- and ÎČ-diversity patterns across seasons and taxonomic groups over the whole network. Genus richness predicted by eDITH was generally higher than values from direct eDNA analysis. Both predicted α- and ÎČ-diversity varied depending on season and taxonomic group. Predicted fish α-diversity increased downstream in all seasons, while invertebrate and bacteria α-diversity either decreased downstream or were unrelated to network position. Spatial ÎČ-diversity mostly decreased downstream, especially for bacteria. The eDITH model yielded a more refined assessment of freshwater biodiversity as compared to raw eDNA data, both in terms of spatial coverage, diversity patterns and effect of covariates, thus providing a more complete picture of freshwater biodiversity
Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA
Accurate characterisation of ecological communities with respect to their biodiversity and food-web structure is essential for conservation. However, combined empirical study of biodiversity and multi-trophic food webs at a large spatial and temporal resolution has been prohibited by the lack of appropriate access to such data from natural systems. Here, we assessed biodiversity and food-web characteristics across a 700 km riverine network over seasons using environmental DNA. We found contrasting biodiversity patterns between major taxonomic groups. Local richness showed statistically significant, season-dependent increases and decreases towards downstream location within the catchment for fish and bacteria, respectively. Meanwhile, invertebrate richness remained spatially unchanged but varied across seasons. The structure of local food webs, such as link density and nestedness, also varied across space and time. However, these patterns did not necessarily mirror those observed for biodiversity and functional feeding characteristics. Our results suggest that biodiversity patterns and food-web dynamics are not directly scalable to each other even at the same spatial and temporal scales. In order to conserve species diversity as well as the functional trophic integrity of communities, patterns of biodiversity and food-web characteristics must thus be jointly studied
Monitoring invasive alien macroinvertebrate species with environmental DNA
Regular monitoring of ecosystems can be used for the early detection of invasive alien species (IAS), and provide information for management and preventing them from becoming established or advancing into new areas. Current methods of monitoring freshwater systems for IAS can be both financially costly and time-consuming, with routine monitoring often carried out at low intensity and at only a small number of sites. In this study, we evaluate how environmental DNA (eDNA) metabarcoding for monitoring freshwater macroinvertebrate IAS compares to traditional kick-net sampling as part of a national (Switzerland) and a catchment monitoring programme. Kick-net sampling was more fruitful for the detection of several well-known target macroinvertebrate IAS. However, eDNA samples proved complementary for the detection of IAS that belong to species often being unnoticed by traditional sampling due to methodological or taxonomic reasons. Specifically, the invasive jellyfish Craspedacusta sowerbii, hardly detectable using classic kick-net sampling, was found to be widespread in both the national and the catchment-scale monitoring with the eDNA method only. Our study shows that IAS detection using eDNA is easily implemented in both national- and catchment-scale monitoring campaigns. However, successful detection of target IAS is still highly dependent on primer choice, species' biology, and availability of adequate markers. Specifically, multiple markers should be considered for detecting IAS from several different taxonomic groups, such as those under the âfreshwater macroinvertebrateâ umbrella term. While eDNA is still developing in terms of these fundamental methodological requirements, surveillance for both target and non-target IAS using eDNA is likely to increase efficiency in early detection of IAS in freshwater systems
Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples â first record of Gammarus fossarum in the UK
© 2017 The Author(s). and 2017 REABIC. We report the discovery of a non-native gammarid, Gammarus fossarum (Koch, 1836) (Crustacea, Amphipoda), in UK rivers. Gammarus fossarum is a common freshwater gammarid in many parts of mainland Europe, but was previously considered absent from the UK. Gammarus fossarum was detected in a number of UK rivers following DNA metabarcoding of a mini-barcode region of the COI gene in macroinvertebrate kick samples, and environmental DNA (eDNA) from water and sediment samples. Subsequent morphological analysis and standard DNA barcoding showed that the species could be reliably identified and separated from Gammarus pulex (Linnaeus, 1758), the most dominant and widespread native freshwater gammarid in the UK. Our data demonstrate extensive geographical coverage of G. fossarum in the UK, spanning distant river catchments. At present there is no data to confirm the likely origin of G. fossarumâs introduction. Subsequent re-examination of historic archive material shows the species to have been present in the UK since at least 1964. This study is among the first to demonstrate the potential of eDNA metabarcoding for detection of new non-native species
General principles for assignments of communities from eDNA : Open versus closed taxonomic databases
Metabarcoding of environmental DNA (eDNA) is a powerful tool for describing biodiversity,
such as finding keystone species or detecting invasive species in environmental
samples. Continuous improvements in the method and the advances in sequencing
platforms over the last decade have meant this approach is now widely used in biodiversity sciences and biomonitoring. For its general use, the method hinges on a correct identification of taxa. However, past studies have shown how this crucially depends
on important decisions during sampling, sample processing, and subsequent handling
of sequencing data. With no clear consensus as to the best practice, particularly
the latter has led to varied bioinformatic approaches and recommendations for data
preparation and taxonomic identification. In this study, using a large freshwater fish
eDNA sequence dataset, we compared the frequently used zero-radius Operational
Taxonomic Unit (zOTU) approach of our raw reads and assigned it taxonomically (i) in
combination with publicly available reference sequences (open databases) or (ii) with
an OSU (Operational Sequence Units) database approach, using a curated database
of reference sequences generated from specimen barcoding (closed database). We
show both approaches gave comparable results for common species. However, the
commonalities between the approaches decreased with read abundance and were
thus less reliable and not comparable for rare species. The success of the zOTU approach
depended on the suitability, rather than the size, of a reference database.
Contrastingly, the OSU approach used reliable DNA sequences and thus often enabled
species-level identifications, yet this resolution decreased with the recent phylogenetic
age of the species. We show the need to include target group coverage,
outgroups and full taxonomic annotation in reference databases to avoid misleading
annotations that can occur when using short amplicon sizes as commonly used in
eDNA metabarcoding studies. Finally, we make general suggestions to improve the
construction and use of reference databases for metabarcoding studies in the future
General principles for assignments of communities from <scp>eDNA</scp> : Open versus closed taxonomic databases
Metabarcoding of environmental DNA (eDNA) is a powerful tool for describing biodiversity, such as finding keystone species or detecting invasive species in environmental samples. Continuous improvements in the method and the advances in sequencing platforms over the last decade have meant this approach is now widely used in biodiversity sciences and biomonitoring. For its general use, the method hinges on a correct identification of taxa. However, past studies have shown how this crucially depends on important decisions during sampling, sample processing, and subsequent handling of sequencing data. With no clear consensus as to the best practice, particularly the latter has led to varied bioinformatic approaches and recommendations for data preparation and taxonomic identification. In this study, using a large freshwater fish eDNA sequence dataset, we compared the frequently used zero-radius Operational Taxonomic Unit (zOTU) approach of our raw reads and assigned it taxonomically (i) in combination with publicly available reference sequences (open databases) or (ii) with an OSU (Operational Sequence Units) database approach, using a curated database of reference sequences generated from specimen barcoding (closed database). We show both approaches gave comparable results for common species. However, the commonalities between the approaches decreased with read abundance and were thus less reliable and not comparable for rare species. The success of the zOTU approach depended on the suitability, rather than the size, of a reference database. Contrastingly, the OSU approach used reliable DNA sequences and thus often enabled species-level identifications, yet this resolution decreased with the recent phylogenetic age of the species. We show the need to include target group coverage, outgroups and full taxonomic annotation in reference databases to avoid misleading annotations that can occur when using short amplicon sizes as commonly used in eDNA metabarcoding studies. Finally, we make general suggestions to improve the construction and use of reference databases for metabarcoding studies in the future
Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment
DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho-taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA-based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta-analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results
Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this âenvironmental DNAâ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long-term gill-net data set available in the UK. Seventy-eight 2L water samples were collected along depth profile transects, gill-net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill-net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods
A new flow path: eDNA connecting hydrology and biology
Environmental DNA (eDNA) has revolutionized ecological research, particularly for biodiversity assessment in various environments, most notably aquatic media. Environmental DNA analysis allows for non-invasive and rapid species detection across multiple taxonomic groups within a single sample, making it especially useful for identifying rare or invasive species. Due to dynamic hydrological processes, eDNA samples from running waters may represent biodiversity from broad contributing areas, which is convenient from a biomonitoring perspective but also challenging, as hydrological knowledge is required for meaningful biological interpretation. Hydrologists could also benefit from eDNA to address unsolved questions, particularly concerning water movement through catchments. While naturally occurring abiotic tracers have advanced our understanding of water age distribution in catchments, for example, current geochemical tracers cannot fully elucidate the timing and flow paths of water through landscapes. Conversely, biological tracers, owing to their immense diversity and interactions with the environment, could offer more detailed information on the sources and flow paths of water to the stream. The informational capacity of eDNA as a tracer, however, is determined by the ability to interpret the complex biological heterogeneity at a study site, which arguably requires both biological and hydrological expertise. As eDNA data has become increasingly available as part of biomonitoring campaigns, we argue that accompanying eDNA surveys with hydrological observations could enhance our understanding of both biological and hydrological processes; we identify opportunities, challenges, and needs for further interdisciplinary collaboration; and we highlight eDNA's potential as a bridge between hydrology and biology, which could foster both domains
Terrestrial land cover shapes fish diversity in major subtropical rivers
Freshwater biodiversity is critically affected by human modifications of terrestrial land use and land cover (LULC). Yet, knowledge of the spatial extent and magnitude of LULC-aquatic biodiversity linkages is still surprisingly limited, impeding the implementation of optimal management strategies. Here, we compiled fish diversity data across a 160,000-kmÂČ subtropical river catchment in Thailand characterized by exceptional biodiversity yet intense anthropogenic alterations, and attributed fish species richness and community composition to contemporary terrestrial LULC across the catchment. We estimated a spatial range of LULC effects extending up to about 20 km upstream from sampling sites, and explained nearly 60% of the variance in the observed species richness, associated with major LULC categories including croplands, forest, and urban areas. We find that integrating both spatial range and magnitudes of LULC effects is needed to accurately predict fish species richness. Further, projected LULC changes showcase future gains and losses of fish species richness across the river network and offer a scalable basis for riverine biodiversity conservation and land management, allowing for potential mitigation of biodiversity loss in highly diverse yet data-deficient tropical to sub-tropical riverine habitats