426 research outputs found

    Maple procedures for the coupling of angular momenta. VI. LS-jj transformations

    Full text link
    Transformation matrices between different coupling schemes are required, if a reliable classification of the level structure is to be obtained for open-shell atoms and ions. While, for instance, relativistic computations are traditionally carried out in jj-coupling, a LSJ coupling notation often occurs much more appropriate for classifying the valence-shell structure of atoms. Apart from the (known) transformation of single open shells, however, further demand on proper transformation coefficients has recently arose from the study of open d- and f-shell elements, the analysis of multiple--excited levels, or the investigation on inner-shell phenomena. Therefore, in order to facilitate a simple access to LS jj transformation matrices, here we present an extension to the Racah program for the set-up and the transformation of symmetry-adapted functions. A flexible notation is introduced for defining and for manipulating open-shell configurations at different level of complexity which can be extended also to other coupling schemes and, hence, may help determine an optimum classification of atomic levels and processes in the future

    Modelling impacts and recovery in benthic communities exposed to localised high CO2

    Get PDF
    Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys

    The enigmatic multiple star VV Ori

    Full text link
    New photometry, including TESS data, have been combined with recent spectroscopic observations of the Orion Ib pulsating triple-star system VV Ori. This yields a revised set of absolute parameters with increased precision. Two different programs were utilized for the light curve analysis, with results in predictably close agreement. The agreement promotes confidence in the analysis procedures. The spectra were analysed using the {\sc FDBinary} program. The main parameters are as follows: M1=11.6±0.14M_1 = 11.6 \pm 0.14 and M2=4.8±0.06M_2 = 4.8 \pm 0.06 (M_\odot). We estimate an approximate mass of the wide companion as M3=2.0±0.3M_3 = 2.0 \pm 0.3 M_\odot. Similarly, R1=5.11±0.03R_{1} = 5.11 \pm 0.03, R2=2.51±0.02R_2 = 2.51 \pm 0.02, R3=1.8±0.1R_3 = 1.8 \pm 0.1 (R_\odot); Te1=26600±300T_{\rm e 1} = 26600 \pm 300, Te2=16300±400T_{\rm e 2} = 16300 \pm 400 and Te3=10000±1000T_{\rm e 3} = 10000 \pm 1000 (K). The close binary's orbital separation is a=13.91a= 13.91 (R_\odot); its age is 8±28 \pm 2 (Myr) and its photometric distance is 396±7396 \pm 7 pc. The primary's β\beta Cep type oscillations support these properties and confirm our understanding of its evolutionary status. Examination of the well-defined λ\lambda6678 He I profiles reveals the primary to have a significantly low projected rotation: some 80\% of the synchronous value. This can be explained on the basis of the precession of an unaligned spin axis. This proposal can resolve also observed variations of the apparent inclination and address other longer-term irregularities of the system reported in the literature. This topic invites further observations and follow-up theoretical study of the dynamics of this intriguing young multiple star.Comment: 17 pages, 15 figures, 14 tables, accepted by MNRA

    R-matrix Floquet theory for laser-assisted electron-atom scattering

    Get PDF
    A new version of the R-matrix Floquet theory for laser-assisted electron-atom scattering is presented. The theory is non-perturbative and applicable to a non-relativistic many-electron atom or ion in a homogeneous linearly polarized field. It is based on the use of channel functions built from field-dressed target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.

    Impacts of Climate Change on the Ascension Island Marine Protected Area and Its Ecosystem Services

    Get PDF
    This is the first projection of marine circulation and biogeochemistry for the Ascension Island Marine Protected Area (AIMPA). Marine Protected Areas are a key management tool used to safeguard biodiversity, but their efficacy is increasingly threatened by climate change. To assess an MPA's vulnerability to climate change and predict biological responses, we must first project how the local marine environment will change. We present the projections of an ensemble from the Sixth Coupled Model Intercomparision Project. Relative to the recent past (2000–2010), the multi‐model means of the mid‐century (2040–2050) project that the AIMPA will become warmer (+0.9 to +1.2°C), more saline (+0.01 to +0.10), with a shallower mixed layer depth (− 1.3 to − 0.8 m), a weaker Atlantic Equatorial Undercurrent (AEU) (− 1.5 to − 0.4 Sv), more acidic (− 0.10 to − 0.07), with lower surface nutrient concentrations (− 0.023 to − 0.0141 mmol N m− 3 and − 0.013 to − 0.009 mmol P m− 3), less chlorophyll (− 6 to − 3 µg m− 3 ) and less primary production (− 0.31 to − 0.20 mol m− 2 yr− 1 ). These changes are often more extreme in the scenarios with higher greenhouse gases emissions and more significant climate change. Using the multi‐model mean for two scenarios in the years 2090–2100, we assessed how five key ecosystem servicesin both the shallow subtidal and the pelagic zone were likely to be impacted by climate change. Both low and high emission scenarios project significant changes to the AIMPA, and it is likely that the provision of several ecosystem services will be negatively impacted. Ascension Island is a small remote volcanic island in the equatorial Atlantic Ocean. The seas around Ascension Island have been protected from commercial fishing since 2019. We used the marine component of computer simulations of the Earth's climate to try to understand the future of the Ascension Island Marine Protected Area (AIMPA). Over the next century, the AIMPA region will become warmer, more saline, more acidic, less productive, and with lower nutrient and chlorophyll concentrations in the surface waters. The most important current of the region, the Atlantic Equatorial Current, is also projected to weaken in all scenarios. These changes are likely to negatively impact the ability of the AIMPA to provide ecosystem services such as healthy ecosystems, fish stocks, the removal of carbon dioxide from the air, and attract tourism. This work is important because it is the first projection of the climate around the AIMPA since it was created, and it has allowed local policymakers to understand how the changing climate is likely to affect their environment and ecosystem service

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Towards a consistent model of the hot quadruple system HD 93206 = QZ Carin\ae: II. N-body model

    Full text link
    HD 93206 is early-type massive stellar system, composed of components resolved by direct imaging (Ab, Ad, B, C, D) as well as a compact sub-system (Aa1, Aa2, Ac1, Ac2). Its geometry was already determined on the basis of extensive photometric, spectroscopic and interferometric observations. However, the fundamental absolute parameters are still not known precisely enough. We use an advanced N-body model to account for all mutual gravitational perturbations among the four close components, and all observational data types, including: astrometry, radial velocities, eclipse timing variations, squared visibilities, closure phases, triple products, normalized spectra, and spectral-energy distribution (SED). The respective model has 38 free parameters, namely three sets of orbital elements, component masses, and their basic radiative properties (TT, logg\log g, vrotv_{\rm rot}). We revised the fundamental parameters of QZ Car as follows. For a model with the nominal extinction coefficient RVAV/E(BV)=3.1R_V \equiv A_V/E(B-V) = 3.1, the best-fit masses are m1=26.1MSm_1 = 26.1\,M_{\rm S}, m2=32.3MSm_2 = 32.3\,M_{\rm S}, m3=70.3MSm_3 = 70.3\,M_{\rm S}, m4=8.8MSm_4 = 8.8\,M_{\rm S}, with uncertainties of the order of 2MS2\,M_{\rm S}, and the system distance d=(2800±100)pcd = (2800\pm 100)\,{\rm pc}. In an alternative model, where we increased the weights of RV and TTV observations and relaxed the SED constraints, because extinction can be anomalous with RV3.4R_V \sim 3.4, the distance is smaller, d=(2450±100)pcd = (2450\pm 100)\,{\rm pc}. This would correspond to that of Collinder 228 cluster. Independently, this is confirmed by dereddening of the SED, which is only then consistent with the early-type classification (O9.7Ib for Aa1, O8III for Ac1). Future modelling should also account for an accretion disk around Ac2 component.Comment: A&A, submitte
    corecore