3 research outputs found
Skunk River Review 2008-2009, vol 21
https://openspace.dmacc.edu/skunkriver/1014/thumbnail.jp
Total Synthesis of the Diterpenoid Alkaloid Arcutinidine Using a Strategy Inspired by Chemical Network Analysis
Arcutinidine and other arcutinidine-type diterpenoid alkaloids feature an intricate polycyclic, bridged framework with unusual connectivity. A chemical network analysis approach to the arcutane skeleton enabled the identification of highly simplifying retrosynthetic disconnections, which indicated that the caged structure could arise from a simpler fused ring system. On this basis, a total synthesis of arcutinidine is reported herein, featuring an unprecedented oxopyrrolium Diels–Alder cycloaddition which furnishes a key tetracyclic intermediate. In addition, the synthesis utilizes a diastereoselective oxidative dearomatization/cycloaddition sequence and a SmI2-mediated C–C coupling to forge the bridged framework of the natural products. This synthetic plan may also enable future investigations into the biosynthetic relationships between the arcutanes, the related diterpenoid atropurpuran, and other diterpenoid alkaloids
Recommended from our members
Total Synthesis of the Diterpenoid Alkaloid Arcutinidine Using a Strategy Inspired by Chemical Network Analysis
Arcutinidine and other arcutinidine-type diterpenoid alkaloids feature an intricate polycyclic, bridged framework with unusual connectivity. A chemical network analysis approach to the arcutane skeleton enabled the identification of highly simplifying retrosynthetic disconnections, which indicated that the caged structure could arise from a simpler fused ring system. On this basis, a total synthesis of arcutinidine is reported herein, featuring an unprecedented oxopyrrolium Diels-Alder cycloaddition which furnishes a key tetracyclic intermediate. In addition, the synthesis utilizes a diastereoselective oxidative dearomatization/cycloaddition sequence and a SmI2-mediated C-C coupling to forge the bridged framework of the natural products. This synthetic plan may also enable future investigations into the biosynthetic relationships between the arcutanes, the related diterpenoid atropurpuran, and other diterpenoid alkaloids