131 research outputs found

    A review of zirconolite solid solution regimes for plutonium and candidate neutron absorbing additives

    Get PDF
    Should the decision be made to immobilise the UK Pu inventory through a campaign of Hot Isostatic Pressing (HIP) in a zirconolite matrix, prior to placement in a geological disposal facility (GDF), a suite of disposability criteria must be satisfied. A GDF safety case should be able to demonstrate that post-closure criticality is not a significant concern by demonstrating that such an event would have a low likelihood of occurring and low consequence if it were to occur. In the case of ceramic wasteforms, an effective means of criticality control may be the co-incorporation of a requisite quantity of a suitable neutron absorbing additive, either through co-immobilisation within the host structure or the encapsulation of discrete particles within the grain structure. Following an initial screening of a range of potential neutron absorbing additives, a literature-based assessment of the solid solution limits of a number of potential additives (Gd, Hf, Sm, In, Cd, B) in the candidate zirconolite (CaZrTi2O7) wasteform is presented. Key areas of research that are in need of development to further support the safety case for nuclearised HIP for Pu inventories are discussed

    Hot isostatically pressed zirconolite wasteforms for actinide immobilisation

    Get PDF
    In order to demonstrate the deployment of Hot Isostatic Pressing (HIP) for the immobilisation of Pu stocks and residues, a series of active and inactive zirconolite formulations have been processed and characterised. In this instance, Ce, U, and Th have been applied as chemical surrogates for Pu4+. A range of formulations targeting isovalent Zr4+ site substitution (i.e. to simulate CaZr1-xPuxTi2O7) have been processed by HIP and characterised by powder X-ray diffraction, and scanning electron microscopy, in order to determine surrogate partitioning between the host zirconolite phase, and accessory phases that may have formed during the HIP process

    Process development of zirconolite ceramics for Pu disposition: use of a CuO sintering aid

    Get PDF
    Zirconolite-structured ceramics are candidate wasteform materials for the immobilisation of separated Pu. Due to the refractory properties of zirconolite and other titanates, removing residual porosity remains challenging in the final wasteform product when utilising a conventional solid state sintering route. Herein, we demonstrate that the addition of CuO as a sintering aid increases densification and promotes grain growth. Moreover, zirconolite phase formation was enhanced at lower process temperatures than typically required (≥1350 °C). CuO addition allowed an equivalent density to be reached using process temperatures of 250 °C lower than the undoped composition. At 150 °C lower than the undoped zirconolite, the addition of CuO resulted in a favourable microstructure and phase assemblage, as confirmed via X-ray diffraction and scanning electron microscopy. Secondary phases of CaTiO3 and Ca0.25Cu0.75TiO3 were observed at some processing temperatures, which may prove deleterious to wasteform performance. The use of a CuO sintering aid provides an avenue for the further development of the thermal processing of ceramic wasteform materials

    Investigation of the effect of milling duration on a Ce-Gd doped zirconolite phase assemblage synthesised by hot isostatic pressing

    Get PDF
    Zirconolite is a candidate ceramic wasteform under consideration for the immobilisation of the UK civil PuO2 inventory. In the present work, a baseline dual-substituted zirconolite with the target composition (Ca0.783Gd0.017Ce0.2)(Zr0.883Gd0.017Ce0.1)(Ti1.6Al0.4)O7 was fabricated by hot isostatic pressing (HIPing). In order to optimise the microstructure properties and improve the obtained yield of the zirconolite phase, a range of planetary ball milling parameters were investigated prior to consolidation by HIP. This included milling the batched oxide precursors at 400 rpm for up to 120 min, the pre-milling of CeO2 (PuO2 surrogate) to reduce the particle size and using a CeO2 source with finer particle size (<5 µm). The HIPed zirconolite product consisted of both zirconolite-2M and zirconolite-3T polytypes in varying proportions; however, an additional perovskite phase was obtained in varying quantities as a secondary phase. Ce L3-edge X-ray absorption spectroscopy was utilised to determine the Ce oxidation state. In this study, the ideal milling parameter for the fabrication of zirconolite waste forms was defined as 60 min at 400 rpm

    Influence of transition metal charge compensation species on phase assemblage in zirconolite ceramics for Pu immobilisation

    Get PDF
    Immobilisation of Pu in a zirconolite matrix (CaZrTi2O7) is a viable pathway to disposition. A-site substitution, in which Pu4+ is accommodated into the Ca2+ site in zirconolite, coupled with sufficient trivalent M3+/Ti4+ substitution (where M3+ = Fe, Al, Cr), has been systematically evaluated using Ce4+ as a structural analogue for Pu4+. A broadly similar phase assemblage of zirconolite-2M and minor perovskite was observed when targeting low levels of Ce incorporation. As the targeted Ce fraction was elevated, secondary phase formation was influenced by choice of M3+ species. Co-incorporation of Ce/Fe resulted in the stabilisation of a minor Ce-containing perovskite phase at high wasteloading, whereas considerable phase segregation was observed for Cr3+ incorporation. The most favourable substitution approach appeared to be achieved with the use of Al3+, as no perovskite or free CeO2 was observed. However, high temperature treatments of Al containing specimens resulted in the formation of a secondary Ce-containing hibonite phase

    Zirconolite matrices for the immobilization of REE–actinide wastes

    Get PDF
    The structural and chemical properties of zirconolite (ideally CaZrTi2O7) as a host phase for separated REE–actinide-rich wastes are considered. Detailed analysis of both natural and synthetic zirconolite-structured phases confirms that a selection of zirconolite polytype structures may be obtained, determined by the provenance, crystal chemistry, and/or synthesis route. The production of zirconolite ceramic and glass–ceramic composites at an industrial scale appears most feasible by cold pressing and sintering (CPS), pressure-assisted sintering techniques such as hot isostatic pressing (HIP), or a melt crystallization route. Moreover, we discuss the synthesis of zirconolite glass ceramics by the crystallization of B–Si–Ca–Zr–Ti glasses containing actinides in conditions of increased temperatures relevant to deep borehole disposal (DBD)

    Review of zirconolite crystal chemistry and aqueous durability

    Get PDF
    Zirconolite (CaZrTi2O7) has been identified as a candidate ceramic wasteform for the immobilisation and disposal of Pu inventories, for which there is no foreseen future use. Here, we provide an overview of relevant zirconolite solid solution chemistry with respect to Ce, U and Pu incorporation, alongside a summary of the available literature on zirconolite aqueous durability. The zirconolite phase may accommodate a wide variety of tri- and tetravalent actinide and rare-earth dopants through isovalent and heterovalent solid solution, e.g. CaZr1–xPuxTi2O7 or Ca1–xPuxZrTi2–2xFe2xO7. The progressive incorporation of actinides within the zirconolite-2M parent structure is accommodated through the formation of zirconolite polytypoids, such as zirconolite-4M or 3T, depending on the choice of substitution regime and processing route. A variety of standardised durability tests have demonstrated that the zirconolite phase exhibits exceptional chemical durability, with release rates of constituent elements typically <10−5 gm−2·d−1. Further work is required to understand the extent to which polytype formation and surrogate choice influence the dissolution behaviour of zirconolite wasteforms

    A feasibility investigation of laboratory based X-ray absorption spectroscopy in support of nuclear waste management

    Get PDF
    X-ray Absorption Spectroscopy is a technique of fundamental importance in nuclear waste management, as an element specific probe of speciation, which governs radionuclide solubility, immobilisation and migration. Here, we exploit recent developments in laboratory instrumentation for X-ray Absorption Spectroscopy, based on a Rowland circle geometry with a spherically bent crystal analyser, to demonstrate speciation in prototype ceramic and glass-ceramic waste forms. Laboratory and synchrotron XANES data acquired from the same materials, at the Ce and U L3 edges, were found to be in excellent quantitative agreement. We establish that analysable laboratory XANES data may be acquired, and interpreted for speciation, even from quite dilute absorber concentrations of a few mol%, albeit with data acquisition times of several hours. For materials with suitable absorber concentrations, this approach will enable routine element specific speciation studies to support rapid optimisation of radioactive waste forms and analysis of radiological materials in a purpose designed laboratory, without the risk associated with transport and manipulation at a synchrotron radiation facility

    Thermal treatment of nuclear fuel-containing Magnox sludge radioactive waste

    Get PDF
    Magnesium aluminosilicate and magnesium borosilicate glass formulations were developed and evaluated for the immobilisation of the radioactive waste known as Magnox sludge. Glass compositions were synthesised using two simplified bounding waste simulants, including corroded and metallic uranium and magnesium at waste loadings of up to 50 wt.%. The glasses immobilising corroded simulant waste formed heterogeneous and fully amorphous glasses, while those immobilising metallic wastes contained crystallites of UO2 and U3O8. Uranium speciation within the glass was investigated by micro-focus X-ray absorption near edge spectroscopy and it was shown that the borosilicate glass compositions were characterised by a slightly lower mean uranium oxidation state than the aluminosilicate counterparts. This had an impact upon the durability, and uranium within glasses of higher mean oxidation states was dissolved more readily. All material showed dissolution rates that were comparable to simulant high level radioactive waste glasses, while the borosilicate-based formulations melted at a temperature suitable for modern vitrification technologies used in radioactive waste applications. These data highlights the potential for vitrification of hazardous radioactive Magnox sludge waste in borosilicate or aluminosilicate glass formulations, with the potential to achieve >95 % reduction in conditioned waste volume over the current baseline plan

    Phase evolution in the CaZrTi2O7–Dy2Ti2O7 system : a potential host phase for minor actinide immobilization

    Get PDF
    Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1–xZr1–xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≤ x ≤ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≤ x ≤ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≤ x ≤ 0.50. Compositions for which x ≥ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7–REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations
    • …
    corecore