106 research outputs found

    A review of zirconolite solid solution regimes for plutonium and candidate neutron absorbing additives

    Get PDF
    Should the decision be made to immobilise the UK Pu inventory through a campaign of Hot Isostatic Pressing (HIP) in a zirconolite matrix, prior to placement in a geological disposal facility (GDF), a suite of disposability criteria must be satisfied. A GDF safety case should be able to demonstrate that post-closure criticality is not a significant concern by demonstrating that such an event would have a low likelihood of occurring and low consequence if it were to occur. In the case of ceramic wasteforms, an effective means of criticality control may be the co-incorporation of a requisite quantity of a suitable neutron absorbing additive, either through co-immobilisation within the host structure or the encapsulation of discrete particles within the grain structure. Following an initial screening of a range of potential neutron absorbing additives, a literature-based assessment of the solid solution limits of a number of potential additives (Gd, Hf, Sm, In, Cd, B) in the candidate zirconolite (CaZrTi2O7) wasteform is presented. Key areas of research that are in need of development to further support the safety case for nuclearised HIP for Pu inventories are discussed

    Hot isostatically pressed zirconolite wasteforms for actinide immobilisation

    Get PDF
    In order to demonstrate the deployment of Hot Isostatic Pressing (HIP) for the immobilisation of Pu stocks and residues, a series of active and inactive zirconolite formulations have been processed and characterised. In this instance, Ce, U, and Th have been applied as chemical surrogates for Pu4+. A range of formulations targeting isovalent Zr4+ site substitution (i.e. to simulate CaZr1-xPuxTi2O7) have been processed by HIP and characterised by powder X-ray diffraction, and scanning electron microscopy, in order to determine surrogate partitioning between the host zirconolite phase, and accessory phases that may have formed during the HIP process

    Investigation of the effect of milling duration on a Ce-Gd doped zirconolite phase assemblage synthesised by hot isostatic pressing

    Get PDF
    Zirconolite is a candidate ceramic wasteform under consideration for the immobilisation of the UK civil PuO2 inventory. In the present work, a baseline dual-substituted zirconolite with the target composition (Ca0.783Gd0.017Ce0.2)(Zr0.883Gd0.017Ce0.1)(Ti1.6Al0.4)O7 was fabricated by hot isostatic pressing (HIPing). In order to optimise the microstructure properties and improve the obtained yield of the zirconolite phase, a range of planetary ball milling parameters were investigated prior to consolidation by HIP. This included milling the batched oxide precursors at 400 rpm for up to 120 min, the pre-milling of CeO2 (PuO2 surrogate) to reduce the particle size and using a CeO2 source with finer particle size (<5 ”m). The HIPed zirconolite product consisted of both zirconolite-2M and zirconolite-3T polytypes in varying proportions; however, an additional perovskite phase was obtained in varying quantities as a secondary phase. Ce L3-edge X-ray absorption spectroscopy was utilised to determine the Ce oxidation state. In this study, the ideal milling parameter for the fabrication of zirconolite waste forms was defined as 60 min at 400 rpm

    A feasibility investigation of laboratory based X-ray absorption spectroscopy in support of nuclear waste management

    Get PDF
    X-ray Absorption Spectroscopy is a technique of fundamental importance in nuclear waste management, as an element specific probe of speciation, which governs radionuclide solubility, immobilisation and migration. Here, we exploit recent developments in laboratory instrumentation for X-ray Absorption Spectroscopy, based on a Rowland circle geometry with a spherically bent crystal analyser, to demonstrate speciation in prototype ceramic and glass-ceramic waste forms. Laboratory and synchrotron XANES data acquired from the same materials, at the Ce and U L3 edges, were found to be in excellent quantitative agreement. We establish that analysable laboratory XANES data may be acquired, and interpreted for speciation, even from quite dilute absorber concentrations of a few mol%, albeit with data acquisition times of several hours. For materials with suitable absorber concentrations, this approach will enable routine element specific speciation studies to support rapid optimisation of radioactive waste forms and analysis of radiological materials in a purpose designed laboratory, without the risk associated with transport and manipulation at a synchrotron radiation facility

    Phase evolution in the CaZrTi2O7–Dy2Ti2O7 system : a potential host phase for minor actinide immobilization

    Get PDF
    Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1–xZr1–xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≀ x ≀ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≀ x ≀ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≀ x ≀ 0.50. Compositions for which x ≄ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7–REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations

    Chemical state mapping of simulant Chernobyl lava-like fuel containing material using micro-focused synchrotron X-ray spectroscopy

    Get PDF
    Uranium speciation and redox behaviour is of critical importance in the nuclear fuel cycle. X-ray absorption near-edge spectroscopy (XANES) is commonly used to probe the oxidation state and speciation of uranium, and other elements, at the macroscopic and microscopic scale, within nuclear materials. Two-dimensional (2D) speciation maps, derived from microfocus X-ray fluorescence and XANES data, provide essential information on the spatial variation and gradients of the oxidation state of redox active elements such as uranium. In the present work, we elaborate and evaluate approaches to the construction of 2D speciation maps, in an effort to maximize sensitivity to the U oxidation state at the U L3-edge, applied to a suite of synthetic Chernobyl lava specimens. Our analysis shows that calibration of speciation maps can be improved by determination of the normalized X-ray absorption at excitation energies selected to maximize oxidation state contrast. The maps are calibrated to the normalized absorption of U L3 XANES spectra of relevant reference compounds, modelled using a combination of arctangent and pseudo-Voigt functions (to represent the photoelectric absorption and multiple-scattering contributions). We validate this approach by microfocus X-ray diffraction and XANES analysis of points of interest, which afford average U oxidation states in excellent agreement with those estimated from the chemical state maps. This simple and easy-to-implement approach is general and transferrable, and will assist in the future analysis of real lava-like fuel-containing materials to understand their environmental degradation, which is a source of radioactive dust production within the Chernobyl shelter

    Synthesis and characterisation of HIP Ca0.80Ce0.20ZrTi1.60Cr0.40O7 zirconolite and observations of the ceramic–canister interface

    Get PDF
    A sample of zirconolite with nominal composition Ca0.80Ce0.20ZrTi1.60Cr0.40O7 was processed via Hot Isostatic Pressing (HIP), with a dwell temperature and pressure of 1320 °C/100 MPa maintained for 4 h. The produced wasteform was characterised by powder XRD, SEM–EDS, Ce L3 and Cr K-edge XANES. A significant portion of the Ce inventory did not fully partition within the zirconolite phase, instead remaining as CeO2 within the microstructure. Inspection of the stainless steel–ceramic interface detailed the presence of an interaction region dominated by a Cr-rich oxide layer. No significant Cr or Fe migration was observed, although a greater concentration of perovskite was observed at the periphery, relative to the bulk ceramic matrix. The X-ray absorption features of Cr remained analogous with Cr3+ accommodation within TiO6 octahedra in the zirconolite matrix. The absorption edge of Ce was comprised of contributions from zirconolite-2M and unincorporated CeO2, with an average oxidation state of Ce3.9+. As zirconolite-2M accounted for > 92 wt% of the overall phase assemblage, it is clear that the dominant oxidation state of Ce in this phase was Ce4+

    Synthesis of Ca1-xCexZrTi2-2xAl2xO7 zirconolite ceramics for plutonium disposition

    Get PDF
    A series of zirconolite ceramics with stoichiometry Ca1-xCexZrTi2-2xAl2xO7 (x = 0–0.35), considered as a host phase for the immobilisation of separated plutonium, were prepared from a mixture of oxide precursors by sintering in air at 1450 °C. Ce was utilised as a structural surrogate for Pu, with Al added to provide charge compensation. XRD and electron diffraction analyses indicated crystallisation of the zirconolite-2M polytype for all compositions, accompanied by various secondary phases contingent on the doping level, consistent with microstructure observation. The relative yield of zirconolite phases remained above 94 wt.% for 0.05 < x < 0.20. It was determined that Ce was partially reduced to the Ce3+ oxidation state and Al occupied mainly octahedral Ti sites. The incorporation rate of CeO2 was calculated to be 9.27 wt.% in Ca0.80Ce0.20ZrTi1.60Al0.40O7 with a comparatively high yield of 94.7 wt.%, which is representative of a PuO2 incorporation rate of 14.86 wt.%

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore