865 research outputs found
Effects of chronic cocaine on monoamine levels in discrete brain structures of lactating rat dams
Chronic gestational cocaine administration has been correlated with high levels of postpartum maternal aggression towards intruders and altered levels of oxytocin in the amygdala. Cocaine may alter both oxytocin and maternal aggression either directly or indirectly through changes in monoamine levels in relevant brain regions. In this study, pregnant female rats were randomly assigned to one of four groups; three cocaine dose groups (7.5, 15 or 30 mg/kg), or a saline-treated group (0.9% normal saline) and given subcutaneous injections twice daily (total volume 2 ml/kg) throughout gestation. Behavioral responses to an inanimate object placed in the homecage were assessed on Postpartum Day (PPD) 6. Immediately following testing, animals were sacrificed and four brain regions implicated in maternal/aggressive behavior (medial preoptic area [MPOA], ventral tegmental area [VTA], hippocampus, and amygdala) were removed for monoamine level analyses using high-performance liquid chromatography. Dams given 30 mg/kg cocaine throughout gestation had significantly higher levels of dopamine (DA) and nonsignificantly elevated serotonin (5-HT) levels relative to saline-treated controls. These dams also exhibited higher frequencies of defensive behavior toward an inanimate object compared to saline-treated controls. Potential mechanisms mediating cocaine-induced increases in responding are proposed
Empirical Evidence on the Use of Credit Scoring for Predicting Insurance Losses with Psycho-social and Biochemical Explanations
An important development in personal lines of insurance in the United States is the use of credit history data for insurance risk classification to predict losses. This research presents the results of collaboration with industry conducted by a university at the request of its state legislature. The purpose was to see the viability and validity of the use of credit scoring to predict insurance losses given its controversial nature and criticism as redundant of other predictive variables currently used. Working with industry and government, this study analyzed more than 175,000 policyholdersâ information for the relationship between credit score and claims. Credit scores were significantly related to incurred losses, evidencing both statistical and practical significance. We investigate whether the revealed relationship between credit score and incurred losses was explainable by overlap with existing underwriting variables or whether the credit score adds new information about losses not contained in existing underwriting variables. The results show that credit scores contain significant information not already incorporated into other traditional rating variables (e.g., age, sex, driving history). We discuss how sensation seeking and self-control theory provide a partial explanation of why credit scoring works (the psycho-social perspective). This article also presents an overview of biological and chemical correlates of risk taking that helps explain why knowing risk-taking behavior in one realm (e.g., risky financial behavior and poor credit history) transits to predicting risk-taking behavior in other realms (e.g., automobile insurance incurred losses). Additional research is needed to advance new nontraditional loss prediction variables from social media consumer information to using information provided by technological advances. The evolving and dynamic nature of the insurance marketplace makes it imperative that professionals continue to evolve predictive variables and for academics to assist with understanding the whys of the relationships through theory development.IC2 Institut
Differential protein expression during growth on linear versus branched alkanes in the obligate marine hydrocarbonâdegrading bacterium Alcanivorax borkumensis SK2T
Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LCâMS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (nâC14) or branched (pristane) alkanes. During growth on nâC14, A. borkumensis expressed a complete pathway for the terminal oxidation of nâalkanes to their corresponding acylâCoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for ÎČâoxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of ÎČâoxidation proteins to overcome steric hinderance from branched substrates
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
A quantum Monte Carlo study of the one-dimensional ionic Hubbard model
Quantum Monte Carlo methods are used to study a quantum phase transition in a
1D Hubbard model with a staggered ionic potential (D). Using recently
formulated methods, the electronic polarization and localization are determined
directly from the correlated ground state wavefunction and compared to results
of previous work using exact diagonalization and Hartree-Fock. We find that the
model undergoes a thermodynamic transition from a band insulator (BI) to a
broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since
it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with
no long-range order, we have searched for a second transition to this state by
(i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U.
We find no transition from the BO to MI state, and we propose that the MI state
in 1D is unstable to bond ordering under the addition of any finite ionic
potential. In real 1D systems the symmetric MI phase is never stable and the
transition is from a symmetric BI phase to a dimerized BO phase, with a
metallic point at the transition
DCC dynamics with the SU(3) linear sigma model
The SU(3) extension of the linear sigma model is employed to elucidate the
effect of including strangeness on the formation of disoriented chiral
condensates. By means of a Hartree factorization, approximate dispersion
relations for the 18 scalar and pseudoscalar meson species are derived and
their self-consistent solution makes it possible to trace out the thermal path
of the two order parameters as well as delineate the region of instability
within which spontaneous pair creation becomes possible. The results depend
significantly on the employed sigma mass, with the highest values yielding the
largest regions of instability. An approximate solution of the equations of
motion for the order parameter in scenarios emulating uniform scaling
expansions show that even with a rapid quench only the pionic modes grow
unstable. Nevertheless, the rapid and oscillatory relaxation of the order
parameters leads to enhanced production of both pions and (to a lesser degree)
kaons.Comment: 29 pages, RevTeX, 11 postscript figures, discussion about anomaly
term adde
Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism
Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding
Within the broad class of multiferroics (compounds showing a coexistence of
magnetism and ferroelectricity), we focus on the subclass of "improper
electronic ferroelectrics", i.e. correlated materials where electronic degrees
of freedom (such as spin, charge or orbital) drive ferroelectricity. In
particular, in spin-induced ferroelectrics, there is not only a {\em
coexistence} of the two intriguing magnetic and dipolar orders; rather, there
is such an intimate link that one drives the other, suggesting a giant
magnetoelectric coupling. Via first-principles approaches based on density
functional theory, we review the microscopic mechanisms at the basis of
multiferroicity in several compounds, ranging from transition metal oxides to
organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic
frameworks, MOFs)Comment: 22 pages, 9 figure
- âŠ