134 research outputs found

    Theory of magnetoresistance in films of dilute magnetic alloys

    Full text link
    Earlier a magnetic anisotropy for magnetic impurities nearby the surface of non-magnetic host was proposed in order to explain the size dependence of the Kondo effect in dilute magnetic alloys. Recently Giordano has measured the magnetoresistance of dilute Au(Fe) films for different thicknesses well above the Kondo temperature TKT_K. In this way he verified the existence of that anisotropy even for such a case where the Kondo effect is not dominating. For detailed comparison of that suggestion with experiments, the magnetic field dependence of the magnetoresistance is calculated in the lowest approximation, thus in the second order of the exchange coupling. The strength of the anisotropy is very close to earlier estimates deduced from the size dependence of the Kondo resistivity amplitude.Comment: (11 pages, 8 figures, essential changes compared to the old version

    Friedel oscillations induced surface magnetic anisotropy

    Full text link
    We present detailed numerical studies of the magnetic anisotropy energy of a magnetic impurity near the surface of metallic hosts (Au and Cu), that we describe in terms of a realistic tight-binding surface Green's function technique. We study the case when spin-orbit coupling originates from the d-band of the host material and we also investigate the case of a strong local spin-orbit coupling on the impurity itself. The splitting of the impurity's spin-states is calculated to leading order in the exchange interaction between the impurity and the host atoms using a diagrammatic Green's function technique. The magnetic anisotropy constant is an oscillating function of the separation d from the surface: it asymptotically decays as 1/d2 and its oscillation period is determined by the extremal vectors of the host's Fermi Surface. Our results clearly show that the host-induced magnetic anisotropy energy is by several orders of magnitude smaller than the anisotropy induced by the local mechanism, which provides sufficiently large anisotropy values to explain the size dependence of the Kondo resistance observed experimentally.Comment: 11 pages, 7 figures, submitted to PR

    Low Temperature Anomaly in Mesoscopic Kondo Wires

    Get PDF
    We report the observation of an anomalous magnetoresistance in extremely dilute quasi-one-dimensional AuFe wires at low temperatures, along with a hysteretic background at low fields. The Kondo resistivity does not show the unitarity limit down to the lowest temperature, implying uncompensated spin states. We suggest that the anomalous magnetoresistance may be understood as the interference correction from the accumulation of geometric phase in the conduction electron wave function around the localized impurity spin.Comment: Four pages, five figure

    Effect of annealing on electron dephasing in three-dimensional polycrystalline metals

    Full text link
    We have studied the effect of thermal annealing on electron dephasing times τϕ\tau_\phi in three-dimensional polycrystalline metals. Measurements are performed on as-sputtered and annealed AuPd and Sb thick films, using weak-localization method. In all samples, we find that τϕ\tau_\phi possesses an extremely weak temperature dependence as T0T \to 0. Our results show that the effect of annealing is non-universal, and it depends strongly on the amount of disorder quenched in the microstructures during deposition. The observed "saturation" behavior of τϕ\tau_\phi cannot be easily explained by magnetic scattering. We suggest that the issue of saturation can be better addressed in three-dimensional, rather than lower-dimensional, structures

    Kondo Effect on Mesoscopic Scale (Review)

    Full text link
    Following the discovery of the Kondo effect the bulk transport and magnetic behavior of the dilute magnetic alloys have been successfully described. In the last fifteen years new directions have been developed as the study of the systems of reduced dimensions and the artificial atoms so called quantum dots. In this review the first subject is reviewed starting with the scanning tunneling microscope (STM) study of a single magnetic impurity. The next subject is the reduction of the amplitude of the Kondo effect in samples of reduced dimension which was explained by the surface magnetic anisotropy which blocks the motion of the integer spin nearby the surface. The electron dephasing and energy relaxation experiments are discussed with the possible explanation including the surface anisotropy, where the situation in cases of integer and half-integer spins is very different. Finally, the present situation of the theory of dynamical structural defects is briefly presented which may lead to two-channel Kondo behavior.Comment: 8 pages, submitted to the JPSJ Special Issue "Kondo effect -- 40 years after the Discovery

    Spin-Orbit-Induced Magnetic Anisotropy for Impurities in Metallic Samples I. Surface Anisotropy

    Full text link
    Motivated by the recent measurements of Kondo resistivity in thin films and wires, where the Kondo amplitude is suppressed for thinner samples, the surface anisotropy for magnetic impurities is studied. That anisotropy is developed in those cases where in addition to the exchange interaction with the impurity there is strong spin-orbit interaction for conduction electrons around the impurity in the ballistic region. The asymmetry in the neighborhood of the magnetic impurity exhibits the anisotropy axis nn which, in the case of a plane surface, is perpendicular to the surface. The anisotropy energy is ΔE=Kd(nS)2\Delta E=K_d (nS)^2 for spin SS, and the anisotropy constant KdK_d is inversionally proportional to distance dd measured from the surface and Kd>0K_d>0. Thus at low temperature the spin is frozen in a singlet or doublet of lowest energy. The influence of that anisotropy on the electrical resistivity is the subject of the following paper (part II).Comment: 28 pages, RevTeX (using epsfig), 8 eps figures included, submitted to PR

    Size Dependence In The Disordered Kondo Problem

    Full text link
    We study here the role randomly-placed non-magnetic scatterers play on the Kondo effect. We show that spin relaxation effects (with time τso\tau_s^o)in the vertex corrections to the Kondo self-energy lead to an exact cancellation of the singular temperature dependence arising from the diffusion poles. For a thin film of thickness LL and a mean-free path \ell, disorder provides a correction to the Kondo resistivity of the form τso/(kFL2)lnT\tau_s^o/(k_FL\ell^2)\ln T that explains both the disorder and sample-size depression of the Kondo effect observed by Blachly and Giordano (PRB {\bf 51}, 12537 (1995)).Comment: 11 pages, LaTeX, 2 Postscript figure

    The Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain

    Full text link
    We study the Kondo effect generated by a single magnetic impurity embedded in an ultrasmall metallic grain, to be called a ``Kondo box''. We find that the Kondo resonance is strongly affected when the mean level spacing in the grain becomes larger than the Kondo temperature, in a way that depends on the parity of the number of electrons on the grain. We show that the single-electron tunneling conductance through such a grain features Kondo-induced Fano-type resonances of measurable size, with an anomalous dependence on temperature and level spacing.Comment: 4 Latex pages, 4 figures, submitted to Phys. Rev. Let

    Electron dephasing near zero temperature: an experimental review

    Full text link
    The behavior of the electron dephasing time near zero temperature, τϕ0\tau_\phi^0, has recently attracted vigorous attention. This renewed interest is primarily concerned with whether τϕ0\tau_\phi^0 should reach a finite or an infinite value as TT \to 0. While it is accepted that τϕ0\tau_\phi^0 should diverge if there exists only electron-electron (electron-phonon) scattering, several recent measurements have found that τϕ0\tau_\phi^0 depends only very weakly on temperature, if at all, when TT is sufficiently low. This article discusses the current experimental status of "the saturation problem", and concludes that the origin(s) for this widely observed saturation are still unresolved
    corecore