1,060 research outputs found

    Getting a kick out of the stellar disk(s) in the galactic center

    Full text link
    Recent observations of the Galactic center revealed a nuclear disk of young OB stars, in addition to many similar outlying stars with higher eccentricities and/or high inclinations relative to the disk (some of them possibly belonging to a second disk). Binaries in such nuclear disks, if they exist in non-negligible fractions, could have a major role in the evolution of the disks through binary heating of this stellar system. We suggest that interactions with/in binaries may explain some (or all) of the observed outlying young stars in the Galactic center. Such stars could have been formed in a disk, and later on kicked out from it through binary related interactions, similar to ejection of high velocity runaway OB stars in young clusters throughout the galaxy.Comment: 2 pages, 2 figs. To be published in the proceedings of the IAU 246 symposium on "Dynamical evolution of dense stellar systems

    The origin of runaway stars

    Full text link
    Milli-arcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and mu Columbae and of the eccentric binary iota Orionis intersect each other about 2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star zeta Ophiuchi intersects that of the nearby pulsar PSR J1932+1059, about 1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system which also contained zeta Oph, and deduce that the pulsar received a kick velocity of about 350 km/s in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.Comment: 5 pages, including 2 eps-figures and 1 table, submitted to the ApJ Letters. The manuscript was typeset using aaste

    Triggered Star Formation by Massive Stars

    Full text link
    We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the Lambda Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.Comment: 2007, ApJ, 657, 88

    The Becklin-Neugebauer Object as a Runaway B Star, Ejected 4000 years ago from the theta^1C system

    Full text link
    We attempt to explain the properties of the Becklin-Neugebauer (BN) object as a runaway B star, as originally proposed by Plambeck et al. (1995). This is one of the best-studied bright infrared sources, located in the Orion Nebula Cluster -- an important testing ground for massive star formation theories. From radio observations of BN's proper motion, we trace its trajectory back to Trapezium star theta^1C, the most massive (45 Msun) in the cluster and a relatively tight (17 AU) visual binary with a B star secondary. This origin would be the most recent known runaway B star ejection event, occurring only \~4000 yr ago and providing a unique test of models of ejection from multiple systems of massive stars. Although highly obscured, we can constrain BN's mass (~7 Msun) from both its bolometric luminosity and the recoil of theta^1C. Interaction of a runaway B star with dense ambient gas should produce a compact wind bow shock. We suggest that X-ray emission from this shocked gas may have been seen by Chandra: the offset from the radio position is ~300 AU in the direction of BN's motion. Given this model, we constrain the ambient density, wind mass-loss rate and wind velocity. BN made closest approach to the massive protostar, source ``I'', 500 yr ago. This may have triggered enhanced accretion and thus outflow, consistent with previous interpretations of the outflow being a recent (~10^3 yr) "explosive" event.Comment: 6 pages, accepted to ApJ Letter

    Young Globular Clusters and Dwarf Spheroidals

    Get PDF
    Most of the globular clusters in the main body of the Galactic halo were formed almost simultaneously. However, globular cluster formation in dwarf spheroidal galaxies appears to have extended over a significant fraction of a Hubble time. This suggests that the factors which suppressed late-time formation of globulars in the main body of the Galactic halo were not operative in dwarf spheroidal galaxies. Possibly the presence of significant numbers of ``young'' globulars at R_{GC} > 15 kpc can be accounted for by the assumption that many of these objects were formed in Sagittarius-like (but not Fornax-like) dwarf spheroidal galaxies, that were subsequently destroyed by Galactic tidal forces. It would be of interest to search for low-luminosity remnants of parental dwarf spheroidals around the ``young'' globulars Eridanus, Palomar 1, 3, 14, and Terzan 7. Furthermore multi-color photometry could be used to search for the remnants of the super-associations, within which outer halo globular clusters originally formed. Such envelopes are expected to have been tidally stripped from globulars in the inner halo.Comment: 18 pages, with 2 figures, in LaTeX format; to appear in the Astrophysical Journal in February 200

    Local Pulsars; A note on the Birth-Velocity Distribution

    Get PDF
    We explore a simple model for the representation of the observed distributions of the motions, and the characteristic ages of the local population of pulsars. The principal difference from earlier models is the introduction of a unique value, S, for the kick velocity with which pulsars are born. We consider separately the proper motion components in galactic longitude and latitude, and find that the distributions of the velocity components parallel and perpendicular to the galactic plane are represented satisfactorily by S=200 km/sec, and leave no room for a significant fraction of much higher velocities. The successful proposition of a unique value for the kick velocity may provide an interesting tool in attempts to understand the physical process leading to the expulsion of the neutron star.Comment: To be published in JAA, 14 pages, 7 figure

    The spatial distribution of O-B5 stars in the solar neighborhood as measured by Hipparcos

    Full text link
    We have developed a method to calculate the fundamental parameters of the vertical structure of the Galaxy in the solar neighborhood from trigonometric parallaxes alone. The method takes into account Lutz-Kelker-type biases in a self-consistent way and has been applied to a sample of O-B5 stars obtained from the Hipparcos catalog. We find that the Sun is located 24.2 +/- 1.7 (random) +/- 0.4 (systematic) pc above the galactic plane and that the disk O-B5 stellar population is distributed with a scale height of 34.2 +/- 0.8 (random) +/- 2.5 (systematic) pc and an integrated surface density of (1.62 +/- 0.04 (random) +/- 0.14 (systematic)) 10^{-3} stars pc^{-2}. A halo component is also detected in the distribution and constitutes at least ~5% of the total O-B5 population. The O-B5 stellar population within ~100 pc of the Sun has an anomalous spatial distribution, with a less-than-average number density. This local disturbance is probably associated with the expansion of Gould's belt.Comment: 14 pages, 3 figures, to appear in the May 2001 issue of the Astronomical Journa

    On identifying the neutron star that was born in the supernova that placed 60Fe onto the Earth

    Get PDF
    Recently, 60Fe was found in the Earth crust formed in a nearby recent supernova (SN). If the distance to the SN and mass of the progenitor of that SN was known, then one could constrain SN models. Knowing the positions, proper motions, and distances of dozens of young nearby neutron stars, we can determine their past flight paths and possible kinematic origin. Once the birth place of a neutron star in a SN is found, we would have determined the distance of the SN and the mass of the SN progenitor star.Comment: refereed NPA5 conference proceedings, in pres

    Local and Remote Forcing of Denitrification in the Northeast Pacific for the Last 2,000 Years

    Full text link
    Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsed and productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsed by atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsed is used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsed record from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsed indicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.Key PointsWind curl upwelling contributes to Southern California primary productivity, especially during weak coastal upwelling intervalsIntensified NPH leads to stronger denitrification through enhanced coastal upwelling and reduced rainfallCalifornia receives relatively more tropical water during the Medieval Climate Anomaly and more subarctic water during the Little Ice AgePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/1/palo20779_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/2/palo20779.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151806/3/palo20779-sup-0001-2019PA003577-SI.pd

    Appropriate Implantable Cardioverter-Defibrillator Therapy in Patients with Ventricular Arrhythmia of Unclear Cause in Secondary Prevention of Sudden Cardiac Death

    Get PDF
    In this study, we sought to investigate the occurrence of appropriate implantable cardioverter-defibrillator (ICD) therapies and inappropriate shocks in secondary prevention ICD recipients with ventricular arrhythmia of unclear cause and ventricular arrhythmia in the context of underlying heart disease. In this retrospective study, consecutive patients with an ICD implanted for secondary prevention in the University Medical Center Groningen (UMCG), the Netherlands between 1 January 2012 and 31 December 2018 were included. Patients were classified as having ventricular arrhythmia of unclear cause if no clear cause was found which could explain the index ventricular arrhythmia. The primary outcome was appropriate ICD therapy. The study population consisted of 257 patients. In 220 patients, an underlying heart disease could be identified as the cause of ventricular arrhythmia, while 37 patients had an unclear cause of ventricular arrhythmia. The median age was 64 years (interquartile range (IQR) 53-72 years). Forty-five (18%) patients were women. During a median duration of follow-up of 6.2 years (IQR 4.8-7.8 years), appropriate ICD therapy occurred in 95 (37%) patients. This number was 90 (41%) in the group with a clear etiology and 5 (14%) in the group with an unclear etiology. In multivariable analysis, index ventricular arrhythmia of unclear cause was associated with fewer appropriate ICD therapies (HR 0.37 [95% CI 0.14-0.99]; p = 0.048), as well as an increased risk of inappropriate ICD shocks (HR 3.71 [95% CI 1.17-11.80]; p = 0.026). Index ventricular arrhythmia of unclear cause was significantly associated with fewer appropriate ICD therapies. </p
    • …
    corecore