249 research outputs found

    Analytical solution of the time evolution of an entangled electron spin pair in a double quantum dot nanostructure

    Full text link
    Using master equations we present an analytical solution of the time evolution of an entangled electron spin pair which can occupy 36 different quantum states in a double quantum dot nanostructure. This solution is exact given a few realistic assumptions and takes into account relaxation and decoherence rates of the electron spins as phenomenological parameters. Our systematic method of solving a large set of coupled differential equations is straightforward and can be used to obtain analytical predictions of the quantum evolution of a large class of complex quantum systems, for which until now commonly numerical solutions have been sought.Comment: 23 pages, 3 figure

    An analytical decomposition protocol for optimal implementation of two-qubit entangling gates

    Full text link
    This paper addresses the question how to implement a desired two-qubit gate U using a given tunable two-qubit entangling interaction H_int. We present a general method which is based on the K_1 A K_2 decomposition of unitary matrices in SU(4) to calculate analytically the smallest number of two-qubit gates U_int [based on H_int] and single-qubit rotations, and the explicit sequence of these operations that are required to implement U. We illustrate our protocol by calculating the implementation of (1) the transformation from standard basis to Bell basis, (2) the CNOT gate, and (3) the quantum Fourier transform for two kinds of interaction - Heisenberg exchange interaction and quantum inductive coupling - and discuss the relevance of our results for solid-state qubits.Comment: 16 pages, published versio

    Detecting entanglement of two electron spin qubits with witness operators

    Full text link
    We propose a scheme for detecting entanglement between two electron spin qubits in a double quantum dot using an entanglement witness operator. We first calculate the optimal configuration of the two electron spins, defined as the position in the energy level spectrum where, averaged over the nuclear spin distribution, 1) the probability to have two separated electrons, and 2) the degree of entanglement of the quantum state quantified by the concurrence are both large. Using a density matrix approach, we then calculate the evolution of the expectation value of the witness operator for the two-spin singlet state, taking into account the effect of decoherence due to quantum charge fluctuations modeled as a boson bath. We find that, for large interdot coupling, it is possible to obtain a highly entangled and robust ground state.Comment: 4 pages, 3 figure

    Energy Spectrum and Exact Cover in an Extended Quantum Ising Model

    Full text link
    We investigate an extended version of the quantum Ising model which includes beyond-nearest neighbour interactions and an additional site-dependent longitudinal magnetic field. Treating the interaction exactly and using perturbation theory in the longitudinal field, we calculate the energy spectrum and find that the presence of beyond-nearest-neighbour interactions enhances the minimal gap between the ground state and the first excited state, irrespective of the nature of decay of these interactions along the chain. The longitudinal field adds a correction to this gap that is independent of the number of qubits. We discuss the application of our model to implementing specific instances of 3-satisfiability problems (Exact Cover) and make a connection to a chain of flux qubits.Comment: 9 pages, 3 figures, published versio

    Detecting entanglement using a double quantum dot turnstile

    Full text link
    We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This set-up is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons ``on demand''.Comment: 5 pages, 2 figures - published versio

    Superluminal Optical Phase Conjugation: Pulse Reshaping and Instability

    Get PDF
    We theoretically investigate the response of optical phase conjugators to incident probe pulses. In the stable (sub-threshold) operating regime of an optical phase conjugator it is possible to transmit probe pulses with a superluminally advanced peak, whereas conjugate reflection is always subluminal. In the unstable (above-threshold) regime, superluminal response occurs both in reflection and in transmission, at times preceding the onset of exponential growth due to the instability.Comment: 9 pages, 6 figures, RevTex, to appear in Phys. Rev.

    Multiparticle entanglement under the influence of decoherence

    Get PDF
    We present a method to determine the decay of multiparticle quantum correlations as quantified by the geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness of entanglement in GHZ-, cluster-, W- and Dicke states of four qubits and show that the Dicke state is most robust. Finally, we determine the geometric measure analytically for decaying GHZ and cluster states of an arbitrary number of qubits.Comment: 5 pages, 3 figures, v2: final version, to appear as a Rapid Communication in PR
    • …
    corecore