539 research outputs found

    Weyl formulas for annular ray-splitting billiards

    Full text link
    We consider the distribution of eigenvalues for the wave equation in annular (electromagnetic or acoustic) ray-splitting billiards. These systems are interesting in that the derivation of the associated smoothed spectral counting function can be considered as a canonical problem. This is achieved by extending a formalism developed by Berry and Howls for ordinary (without ray-splitting) billiards. Our results are confirmed by numerical computations and permit us to infer a set of rules useful in order to obtain Weyl formulas for more general ray-splitting billiards

    Exact trace formulae for a class of one-dimensional ray-splitting systems

    Get PDF
    Based on quantum graph theory we establish that the ray-splitting trace formula proposed by Couchman {\it et al.} (Phys. Rev. A {\bf 46}, 6193 (1992)) is exact for a class of one-dimensional ray-splitting systems. Important applications in combinatorics are suggested.Comment: 14 pages, 3 figure

    Conductance Distribution of a Quantum Dot with Non-Ideal Single-Channel Leads

    Get PDF
    We have computed the probability distribution of the conductance of a ballistic and chaotic cavity which is connected to two electron reservoirs by leads with a single propagating mode, for arbitrary values of the transmission probability Gamma of the mode, and for all three values of the symmetry index beta. The theory bridges the gap between previous work on ballistic leads (Gamma = 1) and on tunneling point contacts (Gamma << 1). We find that the beta-dependence of the distribution changes drastically in the crossover from the tunneling to the ballistic regime. This is relevant for experiments, which are usually in this crossover regime. ***Submitted to Physical Review B.***Comment: 7 pages, REVTeX-3.0, 4 postscript figures appended as self-extracting archive, INLO-PUB-940607

    One-dimensional quantum chaos: Explicitly solvable cases

    Get PDF
    We present quantum graphs with remarkably regular spectral characteristics. We call them {\it regular quantum graphs}. Although regular quantum graphs are strongly chaotic in the classical limit, their quantum spectra are explicitly solvable in terms of periodic orbits. We present analytical solutions for the spectrum of regular quantum graphs in the form of explicit and exact periodic orbit expansions for each individual energy level.Comment: 9 pages and 4 figure

    Variational Principle for Mixed Classical-Quantum Systems

    Full text link
    An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector which includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker-Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment, as a collective variable rather than as a parameter, is presented in the Appendix.Comment: 16 pages, LaTex; added Figure 2 and Figure

    Reflection Symmetric Ballistic Microstructures: Quantum Transport Properties

    Full text link
    We show that reflection symmetry has a strong influence on quantum transport properties. Using a random S-matrix theory approach, we derive the weak-localization correction, the magnitude of the conductance fluctuations, and the distribution of the conductance for three classes of reflection symmetry relevant for experimental ballistic microstructures. The S-matrix ensembles used fall within the general classification scheme introduced by Dyson, but because the conductance couples blocks of the S-matrix of different parity, the resulting conductance properties are highly non-trivial.Comment: 4 pages, includes 3 postscript figs, uses revte

    How Phase-Breaking Affects Quantum Transport Through Chaotic Cavities

    Full text link
    We investigate the effects of phase-breaking events on electronic transport through ballistic chaotic cavities. We simulate phase-breaking by a fictitious lead connecting the cavity to a phase-randomizing reservoir and introduce a statistical description for the total scattering matrix, including the additional lead. For strong phase-breaking, the average and variance of the conductance are calculated analytically. Combining these results with those in the absence of phase-breaking, we propose an interpolation formula, show that it is an excellent description of random-matrix numerical calculations, and obtain good agreement with several recent experiments.Comment: 4 pages, revtex, 3 figures: uuencoded tar-compressed postscrip
    corecore