239 research outputs found

    Modulation Equations: Stochastic Bifurcation in Large Domains

    Full text link
    We consider the stochastic Swift-Hohenberg equation on a large domain near its change of stability. We show that, under the appropriate scaling, its solutions can be approximated by a periodic wave, which is modulated by the solutions to a stochastic Ginzburg-Landau equation. We then proceed to show that this approximation also extends to the invariant measures of these equations

    Rigorous a-posteriori analysis using numerical eigenvalue bounds in a surface growth model

    Full text link
    In order to prove numerically the global existence and uniqueness of smooth solutions of a fourth order, nonlinear PDE, we derive rigorous a-posteriori upper bounds on the supremum of the numerical range of the linearized operator. These bounds also have to be easily computable in order to be applicable to our rigorous a-posteriori methods, as we use them in each time-step of the numerical discretization. The final goal is to establish global bounds on smooth local solutions, which then establish global uniqueness.Comment: 19 pages, 9 figure

    Local existence and uniqueness for a two-dimensional surface growth equation with space--time white noise

    Get PDF
    We study local existence and uniqueness for a surface growth model with space-time white noise in 2D. Unfortunately, the direct fixed-point argument for mild solutions fails here, as we do not have sufficient regularity for the stochastic forcing. Nevertheless, one can give a rigorous meaning to the stochastic PDE and show uniqueness of solutions in that setting. Using spectral Galerkin method and any other types of regularization of the noise, we obtain always the same solution

    Numerical Solution of Stochastic Partial Differential Equations with Correlated Noise

    Get PDF
    In this paper we investigate the numerical solution of stochastic partial differential equations (SPDEs) for a wider class of stochastic equations. We focus on non-diagonal colored noise instead of the usual space-time white noise. By applying a spectral Galerkin method for spatial discretization and a numerical scheme in time introduced by Jentzen &\& Kloeden, we obtain the rate of path-wise convergence in the uniform topology. The main assumptions are either uniform bounds on the spectral Galerkin approximation or uniform bounds on the numerical data. Numerical examples illustrate the theoretically predicted convergence rate

    Predictability of the Burgers dynamics under model uncertainty

    Full text link
    Complex systems may be subject to various uncertainties. A great effort has been concentrated on predicting the dynamics under uncertainty in initial conditions. In the present work, we consider the well-known Burgers equation with random boundary forcing or with random body forcing. Our goal is to attempt to understand the stochastic Burgers dynamics by predicting or estimating the solution processes in various diagnostic metrics, such as mean length scale, correlation function and mean energy. First, for the linearized model, we observe that the important statistical quantities like mean energy or correlation functions are the same for the two types of random forcing, even though the solutions behave very differently. Second, for the full nonlinear model, we estimate the mean energy for various types of random body forcing, highlighting the different impact on the overall dynamics of space-time white noises, trace class white-in-time and colored-in-space noises, point noises, additive noises or multiplicative noises

    A strongly convergent numerical scheme from Ensemble Kalman inversion

    Get PDF
    The Ensemble Kalman methodology in an inverse problems setting can be viewed as an iterative scheme, which is a weakly tamed discretization scheme for a certain stochastic differential equation (SDE). Assuming a suitable approximation result, dynamical properties of the SDE can be rigorously pulled back via the discrete scheme to the original Ensemble Kalman inversion. The results of this paper make a step towards closing the gap of the missing approximation result by proving a strong convergence result in a simplified model of a scalar stochastic differential equation. We focus here on a toy model with similar properties than the one arising in the context of Ensemble Kalman filter. The proposed model can be interpreted as a single particle filter for a linear map and thus forms the basis for further analysis. The difficulty in the analysis arises from the formally derived limiting SDE with non-globally Lipschitz continuous nonlinearities both in the drift and in the diffusion. Here the standard Euler-Maruyama scheme might fail to provide a strongly convergent numerical scheme and taming is necessary. In contrast to the strong taming usually used, the method presented here provides a weaker form of taming. We present a strong convergence analysis by first proving convergence on a domain of high probability by using a cut-off or localisation, which then leads, combined with bounds on moments for both the SDE and the numerical scheme, by a bootstrapping argument to strong convergence

    Enstrophy Dynamics of Stochastically Forced Large-Scale Geophysical Flows

    Get PDF
    Enstrophy is an averaged measure of fluid vorticity. This quantity is particularly important in {\em rotating} geophysical flows. We investigate the dynamical evolution of enstrophy for large-scale quasi-geostrophic flows under random wind forcing. We obtain upper bounds on the enstrophy, as well as results establishing its H\"older continuity and describing the small-time asymptotics

    Multiscale Analysis for SPDEs with Quadratic Nonlinearities

    Full text link
    In this article we derive rigorously amplitude equations for stochastic PDEs with quadratic nonlinearities, under the assumption that the noise acts only on the stable modes and for an appropriate scaling between the distance from bifurcation and the strength of the noise. We show that, due to the presence of two distinct timescales in our system, the noise (which acts only on the fast modes) gets transmitted to the slow modes and, as a result, the amplitude equation contains both additive and multiplicative noise. As an application we study the case of the one dimensional Burgers equation forced by additive noise in the orthogonal subspace to its dominant modes. The theory developed in the present article thus allows to explain theoretically some recent numerical observations from [Rob03]
    corecore