research

Rigorous a-posteriori analysis using numerical eigenvalue bounds in a surface growth model

Abstract

In order to prove numerically the global existence and uniqueness of smooth solutions of a fourth order, nonlinear PDE, we derive rigorous a-posteriori upper bounds on the supremum of the numerical range of the linearized operator. These bounds also have to be easily computable in order to be applicable to our rigorous a-posteriori methods, as we use them in each time-step of the numerical discretization. The final goal is to establish global bounds on smooth local solutions, which then establish global uniqueness.Comment: 19 pages, 9 figure

    Similar works