38 research outputs found

    Demand for Zn2+ in Acid-Secreting Gastric Mucosa and Its Requirement for Intracellular Ca2+

    Get PDF
    Recent work has suggested that Zn(2+) plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+) in gastric mucosa under baseline conditions and its regulation during secretory stimulation.Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+) were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70)Zn(2+), from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of (70)Zn(2+) from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+) was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+) {[Zn(2+)](i)} during exposure to standard extracellular concentrations of Zn(2+) (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+) increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca(2+) {[Ca(2+)](i)}. Uptake of Zn(2+) was abolished following removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores, suggesting that demand for extracellular Zn(2+) increases and depends on influx of extracellular Ca(2+).This study is the first to characterize the content and distribution of Zn(2+) in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+) integrates basolateral demand for Zn(2+) with stimulation of secretion of HCl into the lumen of the gastric gland. Similar connections may be detectable in other secretory cells and tissues

    Heavy-Ion-Induced Lung Tumors: Dose- & LET-Dependence.

    No full text
    There is a limited published literature reporting dose-dependent data for in vivo tumorigenesis prevalence in different organs of various rodent models after exposure to low, single doses of charged particle beams. The goal of this study is to reduce uncertainties in estimating particle-radiation-induced risk of lung tumorigenesis for manned travel into deep space by improving our understanding of the high-LET-dependent dose-response from exposure to individual ion beams after low particle doses (0.03-0.80 Gy). Female CB6F1 mice were irradiated with low single doses of either oxygen, silicon, titanium, or iron ions at various energies to cover a range of dose-averaged LET values from 0.2-193 keV/µm, using 137Cs γ-rays as the reference radiation. Sham-treated controls were included in each individual experiment totally 398 animals across the 5 studies reported. Based on power calculations, between 40-156 mice were included in each of the treatment groups. Tumor prevalence at 16 months after radiation exposure was determined and compared to the age-matched, sham-treated animals. Results indicate that lung tumor prevalence is non-linear as a function of dose with suggestions of threshold doses depending on the LET of the beams. Histopathological evaluations of the tumors showed that the majority of tumors were benign bronchioloalveolar adenomas with occasional carcinomas or lymphosarcomas which may have resulted from metastases from other sites
    corecore