61 research outputs found

    Ice-Rafted Erratics and Bergmounds from Pleistocene Outburst Floods, Rattlesnake Mountain, Washington, USA

    Get PDF
    Exotic ice-rafted debris from the breakup of ice-dammed glacial lakes Missoula and Columbia is common in slackwater areas along the 1,100-km route for outburst floods in the northwestern US. A detailed analysis was performed at Rattlesnake Mountain, which lay beyond the limit of the former ice sheet, where an exceptionally high concentration of ice-rafted debris exists midway along the floods’ path. Here floodwaters temporarily rose to 380 m elevation (forming short-lived Lake Lewis) behind the first substantial hydraulic constriction for the outburst floods near Wallula Gap. Within the 60 km2 study area more than 2,100 erratic isolates and clusters, as well as bergmounds were recorded. Three quarters of erratic boulders are of an exotic granitic composition, which stand in stark contrast to dark Columbia River basalt, the sole bedrock in the region. Other exotics include Proterozoic quartzite and argillite as well as gneiss, diorite, schist and gabbro, all once in direct contact with the Cordilleran Ice Sheet to the north. Most ice-rafted debris is concentrated between 200 and 300 m elevation. Far fewer erratics and bergmounds lie above 300 m elevation because of the preponderance of less-than-maximum floods. Plus, larger deep-rooted icebergs were forced to ground farther away from the ancient shorelines of transient Lake Lewis. As floodwaters moved across the uneven surface of Rattlesnake Mountain, many erratic-bearing icebergs congregated into pre-existing gullies that trend crosswise to flood flow.researc

    A Summary of Fault Recurrence and Strain Rates in the Vicinity of the Hanford Site--Topical Report

    Get PDF
    This document is one in a series of topical reports compiled by the Pacific Northwest National Laboratory to summarize technical information on selected topics important to the performance of a probabilistic seismic hazard analysis of the Hanford Site. The purpose of this report is to summarize available data and analyses relevant to fault recurrence and strain rates within the Yakima Fold Belt. Strain rates have met with contention in the expert community and may have a significant potential for impact on the seismic hazard estimate at the Hanford Site. This report identifies the alternative conceptual models relevant to this technical issue and the arguments and data that support those models. It provides a brief description of the technical issue and principal uncertainties; a general overview on the nature of the technical issue, along with alternative conceptual models, supporting arguments and information, and uncertainties; and finally, suggests some prospective approaches to reducing uncertainties about earthquake recurrence rates for the Yakima Fold Belt

    Data Package of Samples Collected for Hydrogeologic and Geochemical Characterization: 300 Area RI/FS Sediment Cores

    Get PDF
    This is a data package for sediment samples received from the 300 FF 5 OU. This report was prepared for CHPRC. Between August 16, 2010 and April 25, 2011 sediment samples were received from 300-FF-5 for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL

    Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Get PDF
    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors

    Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    Get PDF
    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence
    • …
    corecore