33 research outputs found

    Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow

    Get PDF
    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime

    Size segregation of intruders in perpetual granular avalanches

    Get PDF
    Granular flows such as landslides, debris flows and avalanches are systems of particles with a large range of particle sizes that typically segregate while flowing. The physical mechanisms responsible for this process, however, are still poorly understood, and there is no predictive framework for ascertaining the segregation behaviour of a given system of particles. Here, we provide experimental evidence of individual large intruder particles being attracted to a fixed point in a dry two-dimensional flow of particles of otherwise uniform size. A continuum theory is proposed which captures this effect using only a single fitting parameter that describes the rate of segregation, given knowledge of the bulk flow field. Predictions of the continuum theory are compared with the experimental findings, both for the typical location and velocity field of a range of intruder sizes. For large intruder particle sizes, the continuum model successfully predicts that a fixed point attractor will form, where intruders are drawn to a single location

    A STUDY OF THREE-PHASE FRACTURING IN GRANULAR MEDIA USING HIGH-SPEED IMAGING

    Get PDF
    Using high-speed imaging and digital image correlation, we studied the granular motion and deformation caused by pneumatic fracturing of a wet granular packing in a Hele–Shaw cell subject to a constant injection of air. These pneumatic fractures form patterns of conductive pathways whose form is determined by a complex interplay between pressure, capillary, frictional, and viscous forces. Saturated granular media is pneumatically fractured in this fashion in multiple natural, geo-engineering, and industrial processes. We outline the characteristics of these fracture networks and then examine individual fracture growth events and the local motion of grains with a time resolution of milliseconds. We observe intermittent frictional behavior during these rapid fracturing events, describe an average velocity profile for the motion of grains during fracturing, and illustrate an average compaction profile as a result of these deformations

    Dynamics of Dendritic Ice Freezing in Confinement

    Get PDF
    We use high-speed photography to observe the dendritic freezing of ice between two closely spaced parallel plates. Measuring the propagation speeds of dendrites, we investigate whether there is a confinement-induced thermal influence upon the speed beyond that provided by a single surface. Plates of thermally insulating plastic and moderately thermally conductive glass are used alone and in combination, at temperatures between −10.6 and −4.8 °C, with separations between 17 and 135 ÎŒm wide. No effect of confinement was detected for propagation on glass surfaces, but a possible slowing of propagation speed was seen between insulating plates. The pattern of dendritic growth was also studied, with a change from curving to straight dendrites being strongly associated with a switch from a glass to a plastic substrate

    Microstructural smoothed particle hydrodynamics model and simulations of discontinuous shear-thickening fluids

    Get PDF
    Despite the recent interest in the discontinuous shear-thickening (DST) behavior, few computational works tackle the rich hydrodynamics of these fluids. In this work, we present the first implementation of a microstructural DST model in smoothed particle hydrodynamic (SPH) simulation. The scalar model was implemented in an SPH scheme and tested in two flow geometries. Three distinct ratios of local to non-local microstructural effects were probed: zero, moderate, and strong non-locality. Strong and moderate cases yielded excellent agreement with flow curves constructed via the Wyart–Cates (WC) model, with the moderate case exhibiting banding patterns. We demonstrate that a local model is prone to a stress-splitting instability, resulting in discontinuous stress fields and poor agreement with the WC model. The mechanism of stress splitting has been explored and contextualized by the interaction of local microstructure evolution and the stress-control scheme. Analytic solutions for a body-force-driven DST channel flow have been derived and used to validate the SPH simulations with excellent agreement in velocity profiles. Simulations carried out at increasing driving forces exhibited a decrease in flow. We showed that even the simple scalar model can capture some of the key properties of DST materials, laying the foundation for further SPH study of instabilities and pattern formation

    Ridge instability in dense suspensions caused by the second normal stress difference

    Full text link
    A dense suspension of the cornstarch flowing on a very inclined wall finally forms some ridge-like patterns of the free surface. The onset of pattern formation is the primary target to elucidate the mechanism. In this work, based on the continuity of fluids and the force balance, we show that the flat free surface is unstable when the second normal stress difference N2N_2 is negatively proportional to shear stress and the gravity component perpendicular to the wall is weak enough. Such instability is inevitable to grow into a ridge-like surface profile oriented parallel to the flow direction. We use the instability criterion to predict the critical slope angle for the formation of ridge patterns. The estimated critical angle was found to be in agreement with experimental observations for a cornstarch suspension

    Hydration induced morphological change on proppant surfaces employing a calcium-silicate cement system

    Get PDF
    Commercial aluminosilicate proppant particles have been coated with Ca-Si oxides, with the aim to provide an in-situ increase in the angularity (decrease in Krumbein roundness value) to facilitate their immobilization. Ca-Si oxide systems have been synthesized via sol-gel, cured, and sintered at 1200 °C using (a) CaCO3, (b) CaCO3 + orthosilicic acid (Si(OH)4, SA), and (c) CaCO3 + fused silica (SiO2, FS). When the proppant is cured in the presence of CaCO3 and silicic acid the coatings undergo a significant compositional change, while sintering results in the conversion of the cured samples to ceramic agglomerates with the desired “popcorn” shapes. The best results are obtained in the presence of Si reagents, and hydration of these sintered proppants allows for a distinct increase in the angularity, which is the desired transformation to allow the proppant to be locked-in-place once located in the reservoir. The samples have been characterized at each stages of preparation by scanning electron microscopy (SEM) with associated energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), X-rad diffraction (XRD) and infrared (IR) spectroscopy

    Laser-induced modification of the patellar ligament tissue: comparative study of structural and optical changes

    Get PDF
    The effects of non-ablative infrared (IR) laser treatment of collagenous tissue have been commonly interpreted in terms of collagen denaturation spread over the laser-heated tissue area. In this work, the existing model is refined to account for the recently reported laser-treated tissue heterogeneity and complex collagen degradation pattern using comprehensive optical imaging and calorimetry toolkits. Patella ligament (PL) provided a simple model of type I collagen tissue containing its full structural content from triple-helix molecules to gross architecture. PL ex vivo was subjected to IR laser treatments (laser spot, 1.6 mm) of equal dose, where the tissue temperature reached the collagen denaturation temperature of 60 ± 2°C at the laser spot epicenterin the first regime, and was limited to 67 ± 2°C in the second regime. The collagen network was analyzed versus distance from the epicenter. Experimental characterization of the collagenous tissue at all structural levels included cross-polarization optical coherence tomography, nonlinear optical microscopy, light microscopy/histology, and differential scanning calorimetry. Regressive rearrangement of the PL collagen network was found to spread well outside the laser spot epicenter (>2 mm) and was accompanied by multilevel hierarchical reorganization of collagen. Four zones of distinct optical and morphological properties were identified, all elliptical in shape, and elongated in the direction perpendicular to the PL long axis. Although the collagen transformation into a random-coil molecular structure was occasionally observed, it was mechanical integrity of the supramolecular structures that was primarily compromised. We found that the structural rearrangement of the collagen network related primarily to the heat-induced thermo-mechanical effects rather than molecular unfolding. The current body of evidence supports the notion that the supramolecular collagen structure suffered degradation of various degrees, which gave rise to the observed zonal character of the laser-treated lesion
    corecore