19 research outputs found

    The blood-brain barrier; protecting the developing fetal brain

    Get PDF
    While placental function is fundamental to normal fetal development, the blood-brain barrier provides a second checkpoint critical to protecting the fetal brain and ensuring healthy brain development. The placenta is considered the key barrier between the mother and fetus, regulating delivery of essential nutrients, removing waste as well as protecting the fetus from potentially noxious substances. However, disturbances to the maternal environment and subsequent adaptations to placental function may render the placenta ineffective for providing a suitable environment for the developing fetus and to providing sufficient protection from harmful substances. The developing brain is particularly vulnerable to changes in the maternal/fetal environment. Development of the blood-brain barrier and maturation of barrier transporter systems work to protect the fetal brain from exposure to drugs, excluding them from the fetal CNS. This review will focus on the role of the 'other' key barrier during gestation - the blood-brain barrier - which has been shown to be functional as early as 8 weeks' gestation

    Neuroinflammation in intrauterine growth restriction

    Get PDF
    Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants

    Supporting preterm cardiovascular function

    Get PDF
    Preterm infants are at higher risk of adverse neurodevelopmental outcomes. Inadequate cerebral oxygen delivery resulting from poor cardiovascular function is likely to be a significant contributor to preterm brain injury. In this context, improved support of cardiovascular function is integral to improving preterm outcomes. Many of the treatments used to support preterm cardiovascular function are based on adult physiology and may not be appropriate for the unique physiology of the preterm infant. The preterm heart is structurally immature with reduced contractility and low cardiac output. However, there is limited evidence that inotropic support with dopamine and/or dobutamine is effective in preterm babies. Hypovolemia may also contribute to poor preterm cardiovascular function; there is evidence that capillary leakage results in considerable loss of plasma from the circulation of newborn preterm babies. In addition, the vasoconstrictor response to acute stimuli does not develop until quite late in gestation and is limited in the preterm infant. This may lead to inappropriate vasodilatation adding to functional hypovolemia. The first line treatment for hypotension in preterm infants is volume expansion with crystalloid solutions, but this has limited efficacy in the preterm infant. More effective methods of volume expansion are required. Effective support of preterm cardiovascular function requires better understanding of preterm cardiovascular physiology so that treatments can target mechanisms that are sufficiently mature to respond

    Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system

    Origin and detection of neonatal seizures: animal and clinical studies

    No full text
    Neonatal seizures remain a major clinical problem worldwide and are harmful to the developing brain. Seizures are associated with poor neurodevelopmental outcomes and significant risk of death requiring urgent diagnosis and intervention. Current antiepileptic drugs however have limited efficacy and are potentially harmful to the developing newborn brain. Despite this, standard clinical practice for the treatment of neonatal seizures remains unchanged. This chapter describes a clinically relevant neonatal animal model of HI-induced seizures

    Therapeutic potential to reduce brain injury in growth restricted newborns

    No full text
    Brain injury in intrauterine growth restricted (IUGR) infants is a major contributing factor to morbidity and mortality worldwide. Adverse outcomes range from mild learning difficulties, to attention difficulties, neurobehavioral issues, cerebral palsy, epilepsy, and other cognitive and psychiatric disorders. While the use of medication to ameliorate neurological deficits in IUGR neonates have been identified as warranting urgent research for several years, few trials have been reported. This review summarises clinical trials focusing on brain protection in the IUGR newborn as well as therapeutic interventions trialled in animal models of IUGR. Therapeutically targeting mechanisms of brain injury in the IUGR neonate is fundamental to improving long-term neurodevelopmental outcomes. Inflammation is a key mechanism in neonatal brain injury; and therefore an appealing target. Ibuprofen, an anti-inflammatory drug currently used in the preterm neonate, may be a potential therapeutic candidate to treat brain injury in the IUGR neonate. To better understand the potential of ibuprofen and other therapeutic agents to be neuroprotective in the IUGR neonate, long-term follow up information of neurodevelopmental outcomes must be studied. Where agents are shown to be effective, have a good safety profile and are relatively inexpensive, such as ibuprofen, they can be widely adopted and lead to improved outcomes

    Morphological changes in white matter astrocytes in response to hypoxia/ischemia in the neonatal pig

    No full text
    White matter damage is a significant problem in the human pre-term baby. Damage to white matter is usually associated with injury or insults to babies born prematurely, typically before 32 weeks' gestation, however there is increasing evidence of both grey and white matter damage occurring after 32 weeks' gestation. Astrocytes play a vital role in white matter, regulating molecules such as glutamate in the extracellular space and preventing excitotoxic damage to neighbouring oligodendrocytes and axons. We have previously described dramatic changes in grey matter astrocytes in response to a hypoxic/ischemic (H/I) insult around the time of birth. In this study, we have used GFAP immunohistochemistry and Golgi-Kopsch staining to examine the morphology of white matter astrocytes in control neonatal pig brains, and in the brains of animals exposed to the same (perinatal) H/I insult. We demonstrate that the areal percentage of the section occupied by GFAP-immunoreactive processes and cell bodies is significantly decreased (by 46%, P < 0.0001) in subcortical white matter from H/I brains. This loss of GFAP was accompanied by alterations in astrocyte morphology and an overall decrease in the size (field of section occupied by an individual astrocyte) of white matter astrocytes from 649 mu m(2) to 426 mu m(2), as revealed by Golgi-Kopsch staining and image analysis. These data suggest that astrocytes may contribute to the pathology of white matter damage following an H/I insult around the time of birth, and suggest that astrocytes may offer a novel target for therapies to improve outcomes after H/I. (C) 2010 Elsevier B.V. All rights reserved

    Neonatal seizures are associated with redistribution and loss of GABAA α-subunits in the hypoxic-ischaemic pig

    No full text
    Seizures are a common manifestation of hypoxic-ischaemic brain injury in the neonate. In status epilepticus models alterations to GABAR subunit expression have been suggested to contribute to (i) abnormal development of the GABAergic system, (ii) why seizures become self-sustaining and (iii) the development of pharmacoresistance. Detailed investigation of GABAR subunit protein expression after neonatal hypoxia-ischaemia (HI) is currently insufficient. Using our pig model of HI and subsequent spontaneous neonatal seizures, we investigated changes in protein expression of the three predominant α-subunits of the GABAR; α, α and α. Anaesthetized, ventilated newborn pigs
    corecore