10 research outputs found

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr

    Computing the interleaving distance is NP-hard

    Full text link
    We show that computing the interleaving distance between two multi-graded persistence modules is NP-hard. More precisely, we show that deciding whether two modules are 11-interleaved is NP-complete, already for bigraded, interval decomposable modules. Our proof is based on previous work showing that a constrained matrix invertibility problem can be reduced to the interleaving distance computation of a special type of persistence modules. We show that this matrix invertibility problem is NP-complete. We also give a slight improvement of the above reduction, showing that also the approximation of the interleaving distance is NP-hard for any approximation factor smaller than 33. Additionally, we obtain corresponding hardness results for the case that the modules are indecomposable, and in the setting of one-sided stability. Furthermore, we show that checking for injections (resp. surjections) between persistence modules is NP-hard. In conjunction with earlier results from computational algebra this gives a complete characterization of the computational complexity of one-sided stability. Lastly, we show that it is in general NP-hard to approximate distances induced by noise systems within a factor of 2.Comment: 25 pages. Several expository improvements and minor corrections. Also added a section on noise system

    Quasi-universality of Reeb graph distances

    Full text link
    We establish bi-Lipschitz bounds certifying quasi-universality (universality up to a constant factor) for various distances between Reeb graphs: the interleaving distance, the functional distortion distance, and the functional contortion distance. The definition of the latter distance is a novel contribution, and for the special case of contour trees we also prove strict universality of this distance. Furthermore, we prove that for the special case of merge trees the functional contortion distance coincides with the interleaving distance, yielding universality of all four distances in this case.Comment: 17 pages + 6 pages appendix, 5 figures; this version includes the appendix to the conference paper for SoCG 2022 with the same content otherwis

    On the Stability of Interval Decomposable Persistence Modules

    No full text
    The algebraic stability theorem for persistence modules is a central result in the theory of stability for persistent homology. We introduce a new proof technique which we use to prove a stability theorem for n-dimensional rectangle decomposable persistence modules up to a constant 2n−1 that generalizes the algebraic stability theorem, and give an example showing that the bound cannot be improved for n=2. We then apply the technique to prove stability for block decomposable modules, from which novel results for zigzag modules and Reeb graphs follow. These results are improvements on weaker bounds in previous work, and the bounds we obtain are optimal

    Stability of Persistence Modules

    No full text
    We present a new proof of the algebraic stability theorem, perhaps the main theorem in the theory of stability of persistent homology. We also give an example showing that an analogous result does not hold for a certain class of R2\mathbb{R}^2-modules. Persistent homology is a method in applied topology used to reveal the structure of certain types of data sets, e.g. point clouds in Rn\mathbb{R}^n, by computing the homology of a parametrized set of topological spaces associated to the data set. Results like the algebraic stability theorem give a theoretical justification for the use of persistence homology in practice by showing that a small amount of noise in the input only influences the output by a similarly small amount

    Stability and Complexity in Multi-Parameter Persistence

    No full text

    Computational Complexity of the Interleaving Distance

    No full text
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete

    Computing the Interleaving Distance is NP-Hard

    No full text
    We show that computing the interleaving distance between two multi-graded persistence modules is NP-hard. More precisely, we show that deciding whether two modules are 1-interleaved is NP-complete, already for bigraded, interval decomposable modules. Our proof is based on previous work showing that a constrained matrix invertibility problem can be reduced to the interleaving distance computation of a special type of persistence modules. We show that this matrix invertibility problem is NP-complete. We also give a slight improvement in the above reduction, showing that also the approximation of the interleaving distance is NP-hard for any approximation factor smaller than 3. Additionally, we obtain corresponding hardness results for the case that the modules are indecomposable, and in the setting of one-sided stability. Furthermore, we show that checking for injections (resp. surjections) between persistence modules is NP-hard. In conjunction with earlier results from computational algebra this gives a complete characterization of the computational complexity of one-sided stability. Lastly, we show that it is in general NP-hard to approximate distances induced by noise systems within a factor of 2

    Computing the Interleaving Distance is NP-Hard

    No full text
    We show that computing the interleaving distance between two multi-graded persistence modules is NP-hard. More precisely, we show that deciding whether two modules are 1-interleaved is NP-complete, already for bigraded, interval decomposable modules. Our proof is based on previous work showing that a constrained matrix invertibility problem can be reduced to the interleaving distance computation of a special type of persistence modules. We show that this matrix invertibility problem is NP-complete. We also give a slight improvement of the above reduction, showing that also the approximation of the interleaving distance is NP-hard for any approximation factor smaller than 3. Additionally, we obtain corresponding hardness results for the case that the modules are indecomposable, and in the setting of one-sided stability. Furthermore, we show that checking for injections (resp. surjections) between persistence modules is NP-hard. In conjunction with earlier results from computational algebra this gives a complete characterization of the computational complexity of one-sided stability
    corecore