40 research outputs found

    Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic selection can be implemented by a multi-step procedure, which requires a response variable and a statistical method. For pure-bred pigs, it was hypothesised that deregressed estimated breeding values (EBV) with the parent average removed as the response variable generate higher reliabilities of genomic breeding values than EBV, and that the normal, thick-tailed and mixture-distribution models yield similar reliabilities.</p> <p>Methods</p> <p>Reliabilities of genomic breeding values were estimated with EBV and deregressed EBV as response variables and under the three statistical methods, genomic BLUP, Bayesian Lasso and MIXTURE. The methods were examined by splitting data into a reference data set of 1375 genotyped animals that were performance tested before October 2008, and 536 genotyped validation animals that were performance tested after October 2008. The traits examined were daily gain and feed conversion ratio.</p> <p>Results</p> <p>Using deregressed EBV as the response variable yielded 18 to 39% higher reliabilities of the genomic breeding values than using EBV as the response variable. For daily gain, the increase in reliability due to deregression was significant and approximately 35%, whereas for feed conversion ratio it ranged between 18 and 39% and was significant only when MIXTURE was used. Genomic BLUP, Bayesian Lasso and MIXTURE had similar reliabilities.</p> <p>Conclusions</p> <p>Deregressed EBV is the preferred response variable, whereas the choice of statistical method is less critical for pure-bred pigs. The increase of 18 to 39% in reliability is worthwhile, since the reliabilities of the genomic breeding values directly affect the returns from genomic selection.</p

    Accounting for Extreme Events in the Economic Assessment of Climate Change

    Full text link

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Enzymes of Ureide Synthesis in Pea and Soybean

    No full text
    corecore