2 research outputs found
Investigating centering, scan length, and arm position impact on radiation dose across 4 countries from 4 continents during pandemic: Mitigating key radioprotection issues
Purpose: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. Methods: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). Results: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11�40 relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027�0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). Conclusions: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses. © 202
A multi-center study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records
Purpose: As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict severity outcomes, combining patients� electronic health records (EHR), which included vital signs and laboratory data, with deep learning- and CT-based severity prediction. Method: We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction. Results: For the deep learning model, the correlation coefficient of the network prediction and manual segmentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 CI) of the final prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen predictor in one cohort. Conclusion: The developed deep learning method can segment lung infection regions. Prognosis results indicated that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our prognosis model. © 202