25 research outputs found

    Identification of Two GDSL-Type Esterase/Lipase Genes Related to Tissue-Specific Lipolysis in <i>Dendrobium catenatum</i> by Multi-Omics Analysis

    No full text
    Dendrobium catenatum is an important herb and widely cultivated in China. GDSL-Type Esterase/Lipase proteins (GELPs) are widely distributed in plants and play crucial roles in stress responses, plant growth, and development. However, no identification or functional analysis of GELPs was reported in D. catenatum. This study identifies 52 GELPs in D. catenatum genome, which is classified into four groups by phylogenetic analysis. Four conservative blocks (Ser-Gly-Asn-His) are found in most GELP domains. Transcriptome analysis reveals the expression profiles of GELPs in different organs and flowering phases. Co-expression analysis of the transcriptome and lipidome identifies a GELP gene, Dca016600, that positively correlates with 23 lipids. The purified Dca016600 protein shows the optimum pH is active from 8.0 to 8.5, and the optimum temperature is active from 30 °C to 40 °C. The kinetic study provides Vmax (233.43 μmol·min−1·mg−1) and Km (1.49 mM) for substrate p-nitrophenyl palmitate (p-NPP). Integrated analysis of the transcriptome and proteome identifies a GELP gene, Dca005399, which is specially induced by freezing. Interestingly, Dca005399 shows high expression in symbiotic germination seeds and sepals. This study provides new insights into the function of D. catenatum GELPs in plant development and stress tolerance

    <i>Dendrobium</i> Multi-Omics Reveal Lipid Remodeling in Response to Freezing

    No full text
    Freezing damage is a common phenomenon responsible for reduced yields of economic crops. Regulation of lipid metabolism plays an important role in plant growth and adaptation during freezing. We previously carried out transcriptome and untargeted metabolome analyses to determine the regulation of flavonol and anthocyanin biosynthesis during freezing treatment (FT) and post-freezing recovery (FR) in Dendrobium catenatum. However, changes in lipid levels are hard to confirm by untargeted metabolomics analysis alone. Regulation of lipid metabolism in response to freezing is largely unknown in Dendrobium. In this study, a multi-omics strategy was used to offer a better means of studying metabolic flow during FT and FR. To this end, 6976 proteins were identified by the 4D_label-free proteome, including 5343 quantified proteins. For each of the two conditions, we enriched differentially accumulated proteins (DAPs) into 15 gene ontology (GO) terms, including primary metabolism, lipid metabolism, and photosynthesis processes. We also identified 7 lipid categories and 3672 lipid species using lipidome assays. We found significant remodeling occurring in the phospholipid category during FT and FR. We also found that most sphingolipids were significantly upregulated. An integrated multi-omics analysis revealed significant changes in the expression levels of 141 mRNAs and encoding proteins under both FT and FR conditions. During FT, phospholipase A (PLA) and phospholipase D (PLD) were associated with phospholipid editing and galactolipid remodeling. These results provide valuable new insights into how the freezing tolerance of D. catenatum might be improved by genetic engineering

    Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in <i>Dendrobium catenatum</i>

    No full text
    Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the ‘terpenoid backbone biosynthesis’ pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium

    Identification and Expression Profiling of Nonphosphorus Glycerolipid Synthase Genes in Response to Abiotic Stresses in Dendrobium catenatum

    No full text
    Dendrobium&nbsp;catenatum, a valuable Chinese herb, frequently experiences abiotic stresses, such as cold and drought, under natural conditions. Nonphosphorus glycerolipid synthase (NGLS) genes are closely linked to the homeostasis of membrane lipids under abiotic stress in plants. However, there is limited information on NGLS genes in D. catenatum. In this study, a total of eight DcaNGLS genes were identified from the D. catenatum genome; these included three monogalactosyldiacylglycerol synthase (DcaMGD1, 2, 3) genes, two digalactosyldiacylglycerol synthase (DcaDGD1, 2) genes, and three sulfoquinovosyldiacylglycerol synthase (DcaSQD1, 2.1, 2.2) genes. The gene structures and conserved motifs in the DcaNGLSs showed a high conservation during their evolution. Gene expression profiling showed that the DcaNGLSs were highly expressed in specific tissues and during rapid growth stages. Furthermore, most DcaNGLSs were strongly induced by freezing and post-freezing recovery. DcaMGD1 and DcaSQDs were greatly induced by salt stress in leaves, while DcaDGDs were primarily induced by salt stress in roots. Under drought stress, most DcaNGLSs were regulated by circadian rhythms, and DcaSQD2 was closely associated with drought recovery. Transcriptome analysis also revealed that MYB might be regulated by circadian rhythm and co-expressed with DcaNGLSs under drought stress. These results provide insight for the further functional investigation of NGLS and the regulation of nonphosphorus glycerolipid biosynthesis in Dendrobium

    Characterization and Control of <i>Dendrobium officinale</i> Bud Blight Disease

    No full text
    Dendrobium officinale is an important traditional Chinese medicine (TCM). A disease causing bud blight in D. officinale appeared in 2021 in Yueqing city, Zhejiang Province, China. In this paper, 127 isolates were obtained from 61 plants. The isolates were grouped into 13 groups based on collected areas and morphological observations. Four loci (ITS, LSU, tub2 and rpb2) of 13 representative isolates were sequenced and the isolates were identified by constructing phylogenetic trees with the multi-locus sequence analysis (MLSA) method. We found the disease to be associated with three strains: Ectophoma multirostrata, Alternaria arborescens and Stagonosporopsis pogostemonis, with isolates frequencies of 71.6%, 21.3% and 7.1%, respectively. All three strains are pathogenic to D. officinale. A. arborescens and S. pogostemonis isolated from D. officinale were reported for the first time. Iprodione (50%), 33.5% oxine-copper and Meitian (containing 75 g/L pydiflumetofen and 125 g/L difenoconazole) were chosen to control the dominant pathogen E. multirostrata, with an EC50 value of 2.10, 1.78 and 0.09 mg/L, respectively. All three fungicides exhibited an effective inhibition of activities to the growth of the dominant pathogen E. multirostrata on potato dextrose agar (PDA) plates, with Meitian showing the strongest inhibitory effect. We further found that Meitian can effectively control D. officinale bud blight disease in pot trial

    Evaluation of Virus-Free Chrysanthemum ‘Hangju’ Productivity and Response to Virus Reinfection in the Field: Molecular Insights into Virus–Host Interactions

    No full text
    The shoot apical meristem culture has been used widely to produce virus-free plantlets which have the advantages of strong disease resistance, high yield, and prosperous growth potential. However, this virus-free plant will be naturally reinfected in the field. The physiological and metabolic responses in the reinfected plant are still unknown. The flower of chrysanthemum ‘Hangju’ is a traditional medicine which is unique to China. In this study, we found that the virus-free ‘Hangju’ (VFH) was reinfected with chrysanthemum virus B/R in the field. However, the reinfected VFH (RVFH) exhibited an increased yield and medicinal components compared with virus-infected ‘Hangju’ (VIH). Comparative analysis of transcriptomes was performed to explore the molecular response mechanisms of the RVFH to CVB infection. A total of 6223 differentially expressed genes (DEGs) were identified in the RVFH vs. the VIH. KEGG enrichment and physiological analyses indicated that treatment with the virus-free technology significantly mitigated the plants’ lipid and galactose metabolic stress responses in the RVFH. Furthermore, GO enrichment showed that plant viral diseases affected salicylic acid (SA)-related processes in the RVFH. Specifically, we found that phenylalanine ammonia-lyase (PAL) genes played a major role in defense-related SA biosynthesis in ‘Hangju’. These findings provided new insights into the molecular mechanisms underlying plant virus–host interactions and have implications for developing strategies to improve plant resistance against viruses

    Fusarium spp. Associated with Dendrobium officinale Dieback Disease in China

    No full text
    A rare plant species of the Orchidaceae family, Dendrobium officinale is considered among the top ten Chinese medicinal herbs for its polysaccharide. Since 2021, when the dieback disease of D. officinale was first reported in Yueqing City, Zhejiang Province, China, Fusarium isolates (number = 152) were obtained from 70 plants in commercial greenhouses. The disease incidence ranged from 40% to 60% in the surveyed areas. Multilocus sequence analysis (MLSA) coupled with morphological characterization revealed that the collected isolates belonged to five species (sp.), viz., Fusarium concentricum, F. fujikuroi, F. nirenbergiae, F. curvatum, and F. stilboides, with isolation frequencies of 34.6%, 22.3%, 18.4%, 13.8%, and 10.5%, respectively. Notably, at least two Fusarium species were simultaneously isolated and identified from the infected plants. Finally, the pathogenicity test results demonstrated that such species were responsible for the dieback disease of D. officinale. However, F. concentricum and F. fujikuroi were more invasive compared to the other species in this study. To the best of the authors&rsquo; knowledge, this study was the first report of F. concentricum, F. curvatum, F. fujikuroi, F. nirenbergiae, and F. stilboides causing the dieback disease of D. officinale in China and worldwide. This work provides valuable data about the diversity and pathogenicity of Fusarium populations, which will help in formulating effective strategies and policies for better control of the dieback disease

    Molecular and Pathogenic Characterization of Fusarium Species Associated with Corm Rot Disease in Saffron from China

    No full text
    Saffron (Crocus sativus L.) is a commercial spice crop well-known throughout the world, valued for culinary, colorant, and pharmaceutical purposes. In China, Fusarium nirenbergiae was detected as causative agent of saffron corm rot, the most pervasive disease for the first time in 2020. In the present study, 261 Fusarium-like isolates were recovered from 120 rotted corms in four saffron producing fields at Zhejiang, Shanghai, and Yunnan provinces, China, in 2021. A combination of morpho-cultural features and multilocus sequence analysis (MLSA) of the concatenated rpb2 (DNA-directed RNA polymerase II largest subunit) and tef1 (translation elongation factor 1-&alpha;) partial sequences showed that the isolates from saffron belong to Fusarium nirenbergiae as well as F. commune, and F. annulatum with isolation frequencies of 58.2%, 26.8%, and 14.9%, respectively. Notably, F. commune was more prevalent than F. annulatum in the collected samples. Pathogenicity tests confirmed that both species were pathogenic on saffron corm. This is the first report of F. annulatum and F. commune causing corm rot of saffron, globally. Outcomes of the current research demonstrate that Fusarium spp. associated with saffron corm rot are more diverse than previously reported. Furthermore, some plants were infected by two or more Fusarium species. Our findings broaden knowledge about Fusarium spp. that inflict corm rot and assist the development of control measures

    <i>Nigrospora oryzae</i> Causing Leaf Spot Disease on <i>Chrysanthemum</i> × <i>morifolium</i> Ramat and Screening of Its Potential Antagonistic Bacteria

    No full text
    Chrysanthemum × morifolium Ramat. is a famous perennial herb with medicinal, edible, and ornamental purposes, but the occurrence of plant diseases can reduce its value. A serious disease that caused leaf spots in C. morifolium appeared in 2022 in Tongxiang City, Zhejiang Province, China. The C. morifolium leaves with brown spots were collected and used for pathogen isolation. By completing Koch’s postulates, it was proven that the isolate had pathogenicity to infect C. morifolium. It was determined that the pathogen isolated from chrysanthemum leaves was Nigrospora oryzae, through morphology and a multilocus sequence analysis method using a combination of the internal transcribed spacer gene (ITS), beta-tubulin gene (TUB2), and translation elongation factor 1-alpha gene (TEF1-α). This is the first report of C. morifolium disease caused by N. oryzae in the world. Through dual culture assay on PDA plates, 12 strains of bacteria with antagonistic effects were selected from 231 strains from the C. morifolium phyllosphere, among which Bacillus siamensis D65 had the best inhibitory effect on N. oryzae growth. In addition, the components of a strain D65 fermentation broth were profiled by SPME-GC-Q-TOF analysis, providing a foundation for further application and research of biological control
    corecore