27 research outputs found

    A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency

    Get PDF
    Receptor agonism remains poorly understood at the molecular and mechanistic level. In this study, we identified a fully human anti-Fas antibody that could efficiently trigger apoptosis and therefore function as a potent agonist. Protein engineering and crystallography were used to mechanistically understand the agonistic activity of the antibody. The crystal structure of the complex was determined at 1.9 Å resolution and provided insights into epitope recognition and comparisons with the natural ligand FasL (Fas ligand). When we affinity-matured the agonist antibody, we observed that, surprisingly, the higher-affinity antibodies demonstrated a significant reduction, rather than an increase, in agonist activity at the Fas receptor. We propose and experimentally demonstrate a model to explain this non-intuitive impact of affinity on agonist antibody signalling and explore the implications for the discovery of therapeutic agonists in general

    Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Get PDF
    Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection

    Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Get PDF
    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD <2.0 Å), the DPM-HMM method performs as well or better than the best templates, demonstrating that our automated method recaptures these canonical loops without inclusion of any IgG specific terms or manual intervention. In cases with poor or few good templates (mean RMSD >7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/

    Structural studies on viral escape from antibody neutralization.

    No full text
    International audienc

    An Antibody That Prevents the Hemagglutinin Low pH Fusogenic Transition

    No full text
    International audienc

    The effects of strain heterology on the epidemiology of equine influenza in a vaccinated population.

    No full text
    We assess the effects of strain heterology (strains that are immunologically similar but not identical) on equine influenza in a vaccinated population. Using data relating to individual animals, for both homologous and heterologous vaccinees, we estimate distributions for the latent and infectious periods, quantify the risk of becoming infected in terms of the quantity of cross-reactive antibodies to a key surface protein of the virus (haemagglutinin) and estimate the probability of excreting virus (i.e. becoming infectious) given that infection has occurred. The data suggest that the infectious period, the risk of becoming infected (for a given vaccine-induced level of cross-reactive antibodies) and the probability of excreting virus are increased for heterologously vaccinated animals when compared with homologously vaccinated animals. The data are used to parameterize a modified susceptible, exposed, infectious and recovered/resistant (SEIR) model, which shows that these relatively small differences combine to have a large effect at the population level, where populations of heterologous vaccinees face a significantly increased risk of an epidemic occurring
    corecore