4 research outputs found

    Atrial Fibrillation Detection Based on a Residual CNN Using BCG Signals

    No full text
    Atrial fibrillation (AF) is the most common arrhythmia and can seriously threaten patient health. Research on AF detection carries important clinical significance. This manuscript proposes an AF detection method based on ballistocardiogram (BCG) signals collected by a noncontact sensor. We first constructed a BCG signal dataset consisting of 28,214 ten-second nonoverlapping segments collected from 45 inpatients during overnight sleep, including 9438 for AF, 9570 for sinus rhythm (SR), and 9206 for motion artifacts (MA). Then, we designed a residual convolutional neural network (CNN) for AF detection. The network has four modules, namely a downsampling convolutional module, a local feature learning module, a global feature learning module, and a classification module, and it extracts local and global features from BCG signals for AF detection. The model achieved precision, sensitivity, specificity, F1 score, and accuracy of 96.8%, 93.7%, 98.4%, 95.2%, and 96.8%, respectively. The results indicate that the AF detection method proposed in this manuscript could serve as a basis for long-term screening of AF at home based on BCG signal acquisition

    Dynamic computed tomography manifestations of simulated wooden foreign bodies in blood-saline mixtures with variable concentrations and retention times

    No full text
    Abstract Diagnosing wooden foreign bodies (WFBs) using computed tomography (CT) is often missed, leading to adverse outcomes. This study aims to reduce misdiagnoses by exploring the density variation of blood-saline mixtures in ex vivo models. Twenty Cunninghamia lanceolata sticks, selected as WFB models, were randomly assigned to five groups: a control group (saline) and four experimental groups immersed in blood-saline mixtures with varying concentrations. The samples were then placed in a constant-temperature water bath at 36.8 °C. CT scans were performed in the lowest and highest density areas, and the volume of the low-density areas was measured at the post-processing workstation. Finally, the effects of time and concentration on imaging were analyzed, and fitting curves were generated. The blood-saline mixture concentration and time significantly affected the CT number in the three areas. WFB images changed dynamically over time, with two typical imaging signs: the bull's-eye sign on the short axis images and the tram line sign on the long axis images. Fitting curves of the CT number in the lowest density areas with different concentrations can quantify imaging changes. The CT number of the lowest density areas increased with time, following a logarithmic function type, while the CT number of the highest density areas exhibited a fast-rising platform type. The volume of the low-density areas decreased over time. The time of damage caused by WFBs and the influence of varying blood and tissue fluid contents at the damaged site should be considered in the diagnosis. Imaging changes from multiple CT scans at different times can aid in diagnosis
    corecore