227 research outputs found
Illumination and annealing characteristics of two-dimensional electron gas systems in metal-organic vapor-phase epitaxy grown AlGaN/AlN/GaN heterostructures
We studied the persistent photoconductivity (PPC) effect in AlGaN/AlN/GaN
heterostructures with two different Al-compositions (x=0.15 and x=0.25). The
two-dimensional electron gas formed at the AlN/GaN heterointerface was
characterized by Shubnikov-de Haas and Hall measurements. Using optical
illumination, we were able to increase the carrier density of the
Al0.15Ga0.85N/AlN/GaN sample from 1.6x10^{12} cm^{-2} to 5.9x1012 cm^{-2},
while the electron mobility was enhanced from 9540 cm2/Vs to 21400 cm2/Vs at T
= 1.6 K. The persistent photocurrent in both samples exhibited a strong
dependence on illumination wavelength, being highest close to the bandgap and
decreasing at longer wavelengths. The PPC effect became fairly weak for
illumination wavelengths longer than 530 nm and showed a more complex response
with an initial negative photoconductivity in the infrared region of the
spectrum (>700 nm). The maximum PPC-efficiency for 390 nm illumination was
0.011% and 0.005% for Al0.25Ga0.75N/AlN/GaN and Al0.15Ga0.85N/AlN/GaN samples,
respectively. After illumination, the carrier density could be reduced by
annealing the sample. Annealing characteristics of the PPC effect were studied
in the 20-280 K temperature range. We found that annealing at 280 K was not
sufficient for full recovery of the carrier density. In fact, the PPC effect
occurs in these samples even at room temperature. Comparing the measurement
results of two samples, the Al0.25Ga0.75N/AlN/GaN sample had a larger response
to illumination and displayed a smaller recovery with thermal annealing. This
result suggests that the energy scales of the defect configuration-coordinate
diagrams for these samples are different, depending on their Al-composition.Comment: 27 pages, 8 figure
Self-limiting low-temperature growth of crystalline AIN thin films by plasma-enhanced atomic layer deposition
Cataloged from PDF version of article.We report on the self-limiting growth and characterization of aluminum nitride (AlN) thin films. AlN films were deposited by plasma-enhanced atomic layer deposition on various substrates using trimethylaluminum (TMA) and ammonia (NH3). At 185 degrees C, deposition rate saturated for TMA and NH3 doses starting from 0.05 and 40 S. respectively. Saturative surface reactions between TMA and NH3 resulted in a constant growth rate of similar to 0.86 angstrom/cycle from 100 to 200 degrees C. Within this temperature range, film thickness increased linearly with the number of deposition cycles. At higher temperatures (>= 225 degrees C) deposition rate increased with temperature. Chemical composition and bonding states of the films deposited at 185 degrees C were investigated by Xray photoelectron spectroscopy. High resolution Al 2p and N 1s spectra confirmed the presence of AlN with peaks located at 73.02 and 396.07 eV, respectively. Films deposited at 185 degrees C were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction. High-resolution transmission electron microscopy images of the AlN thin films deposited on Si (100) and glass substrates revealed a microstructure consisting of nanometer sized crystallites. Films exhibited an optical band edge at similar to 5.8 eV and an optical transmittance of >95% in the visible region of the spectrum. (C) 2011 Elsevier B.V. All rights reserved
Atomic layer deposition of GaN at low temperatures
Cataloged from PDF version of article.The authors report on the self-limiting growth of GaNthin films at low temperatures. Films were deposited on Si substrates by plasma-enhanced atomic layer deposition using trimethylgallium (TMG) and ammonia (NH3) as the group-III and -V precursors, respectively. GaNdeposition rate saturated at 185 °C for NH3 doses starting from 90 s. Atomic layer deposition temperature window was observed from 185 to ∼385 °C. Deposition rate, which is constant at ∼0.51 Å/cycle within the temperature range of 250 – 350 °C, increased slightly as the temperature decreased to 185 °C. In the bulk film, concentrations of Ga, N, and O were constant at ∼36.6, ∼43.9, and ∼19.5 at. %, respectively. C was detected only at the surface and no C impurities were found in the bulk film. High oxygen concentration in films was attributed to the oxygen impurities present in group-V precursor. High-resolution transmission electron microscopy studies revealed a microstructure consisting of small crystallites dispersed in an amorphous matrix
Effect of post-deposition annealing on the electrical properties of B-Ga2O3 thin films grown on p-Si by plasma-enhanced atomic layer deposition
Cataloged from PDF version of article.Ga2O3 dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga 2O3 thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900°C for 30min under N2 ambient, films crystallized into β-form monoclinic structure. Electrical properties of the β-Ga2O3 thin films were then investigated by fabricating and characterizing Al/β-Ga2O3/p-Si metal-oxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Qeff) were calculated from the capacitance-voltage (C-V) curves using the flat-band voltage shift and were found as 2.6×1012, 1.9×1012, and 2.5×10 12 cm-2 for samples annealed at 700, 800, and 900°C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO2 layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900°C, and by the Frenkel-Poole emission model for film annealed at 800°C. Leakage current density was found to improve with annealing temperature. β-Ga2O3 thin film annealed at 800°C exhibited the highest reverse breakdown field value. © 2014 American Vacuum Society
Complementary spiral resonators for ultrawideband suppression of simultaneous switching noise in high-speed circuits
Cataloged from PDF version of article.In this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN)
mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral
resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically
around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span
ranging from 340 MHz to beyond 10 GHz. By placing a slit in the co-centric rings, lower cut-off
frequency is reduced to 150 MHz, keeping the rest of the structure unaltered. Finally, the power plane
structure with modified complementary spiral resonators (MCSRs) is designed, fabricated, and evaluated
experimentally. Measurement and simulation results are in well-agreement
Electrical characteristics of B-GaN2O3 thin films grown by PEALD
Cataloged from PDF version of article.In this work, 7.5 nm Ga2O3 dielectric thin films have been deposited on p-type (111) silicon wafer using plasma enhanced atomic layer deposition (PEALD) technique. After the deposition, Ga2O3 thin films were annealed under N-2 ambient at 600, 700, and 800 degrees C to obtain beta-phase. The structure and microstructure of the beta-Ga2O3 thin films was carried out by using grazing-incidence X-ray diffraction (GIXRD). To show effect of annealing temperature on the microstructure of beta-Ga2O3 thin films, average crystallite size was obtained from the full width at half maximum (FWHM) of Bragg lines using the Scherrer formula. It was found that crystallite size increased with increasing annealing temperature and changed from 0.8 nm to 9.1 nm with annealing. In order to perform electrical characterization on the deposited films, Al/beta-Ga2O3/p-Si metal-oxide-semiconductor (MOS) type Schottky barrier diodes (SBDs) were fabricated using the beta-Ga2O3 thin films were annealed at 800 degrees C. The main electrical parameters such as leakage current level, reverse breakdown voltage, series resistance (R-S), ideality factor (n), zero-bias barrier height (phi(Bo)), and interface states (N-SS) were obtained from the current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. The RS values were calculated by using Cheung methods. The energy density distribution profile of the interface states as a function of (E-SS-E-V) was obtained from the forward bias I-V measurements by taking bias dependence of ideality factor, effective barrier height (phi(e)), and R-S into account. Also using the Norde function and C-V technique, phi(e) values were calculated and cross-checked. Results show that beta-Ga2O3 thin films deposited by PEALD technique at low temperatures can be used as oxide layer for MOS devices and electrical properties of these devices are influenced by some important parameters such as NSS, RS, and beta-Ga2O3 oxide layer. (C) 2014 Elsevier B.V. All rights reserved
Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes
Cataloged from PDF version of article.Electrospun polymeric nanofibers were either surface-decorated with zinc oxide (ZnO) nanoparticles or coated with a continuous ZnO thin film with a precise thickness (similar to 27 nm) via atomic layer deposition (ALD) for the fabrication of flexible photocatalytic nanofibrous membranes
Atomic layer deposition: An enabling technology for the growth of functional nanoscale semiconductors
In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications. © 2017 IOP Publishing Ltd
Optical characteristics of nanocrystalline AlxGa1-xN thin films deposited by hollow cathode plasma-assisted atomic layer deposition
Cataloged from PDF version of article.Gallium nitride (GaN), aluminum nitride (AlN), and AlxGa(1-x)N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200 degrees C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and AlxGa1-xN films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2 nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4 nm when the annealing duration increased from 30 min to 2 h (800 degrees C). For all films, the average optical transmission was similar to 85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and AlxGa1-xN were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (lambda = 550 nm) with the increased Al content x (0 400 nm). Postdeposition annealing at 900 degrees C for 2 h considerably lowered the refractive index value of GaN films (2.33-1.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95 eV, and it decreased to 3.90 eV for films annealed at 800 degrees C for 30 min and 2 h. On the other hand, this value increased to 4.1 eV for GaN films annealed at 900 degrees C for 2 h. This might be caused by Ga2O3 formation and following phase change. The optical bandgap value of as-deposited AlxGa1-xN films decreased from 5.75 to 5.25 eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films. (C) 2014 American Vacuum Society
High-speed visible-blind GaN-based indium-tin-oxide Schottky photodiodes
Cataloged from PDF version of article.We have fabricated GaN-based high-speed ultraviolet Schottkyphotodiodes using indium–tin–oxide (ITO) Schottky contacts. Before devicefabrication, the optical transparency of thin ITO films in the visible-blind spectrum was characterized via transmission and reflection measurements. The devices were fabricated on n−/n+GaN epitaxial layers using a microwave compatible fabrication process. Our ITO Schottkyphotodiode samples exhibited a maximum quantum efficiency of 47% around 325 nm. Time-based pulse-response measurements were done at 359 nm. The fabricateddevices exhibited a rise time of 13 ps and a pulse width of 60 ps.
© 2001 American Institute of Physic
- …