4 research outputs found

    Towards the Scheduling of Multiple Workflows on Computational Grids

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The workflow paradigm has become the standard to represent processes and their execution flows. With the evolution of e-Science, workflows are becoming larger and more computational demanding. Such e-Science necessities match with what computational Grids have to offer. Grids are shared distributed platforms which will eventually receive multiple requisitions to execute workflows. With this, there is a demand for a scheduler which deals with multiple workflows in the same set of resources, thus the development of multiple workflow scheduling algorithms is necessary. In this paper we describe four different initial strategies for scheduling multiple workflows on Grids and evaluate them in terms of schedule length and fairness. We present results for the initial schedule and for the makespan after the execution with external load. From the results we conclude that interleaving the workflows on the Grid leads to good average makespan and provides fairness when multiple workflows share the same set of resources.83419441Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [05/59706-3

    A Seamless Flow Mobility Management Architecture for Vehicular Communication Networks

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Vehicular ad-hoc networks (VANETs) are self-organizing, self-healing networks which provide wireless communication among vehicular and roadside devices. Applications in such networks can take advantage of the use of simultaneous connections, thereby maximizing the throughput and lowering latency. In order to take advantage of all radio interfaces of the vehicle and to provide good quality of service for vehicular applications, we developed a seamless flow mobility management architecture based on vehicular network application classes with network-based mobility management. Our goal is to minimize the time of flow connection exchange in order to comply with the minimum requirements of vehicular application classes, as well as to maximize their throughput. Network simulator (NS-3) simulations were performed to analyse the behaviour of our architecture by comparing it with other three scenarios. As a result of this work, we observed that the proposed architecture presented a low handover time, with lower packet loss and lower delay.152SI207216Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [2009/15008-1

    Scheduling in Hybrid Clouds

    No full text
    Schedulers for cloud computing determine on which processing resource jobs of a workflow should be allocated. In hybrid clouds, jobs can be allocated on either a private cloud or a public cloud on a pay per use basis. The capacity of the communication channels connecting these two types of resources impacts the makespan and the cost of workflow execution. This article introduces the scheduling problem in hybrid clouds presenting the main characteristics to be considered when scheduling workflows, as well as a brief survey of some of the scheduling algorithms used in these systems. To assess the influence of communication channels on job allocation, we compare and evaluate the impact of the available bandwidth on the performance of some of the scheduling algorithms.509424
    corecore