235 research outputs found

    Partitioning of Distributed MIMO Systems based on Overhead Considerations

    Full text link
    Distributed-Multiple Input Multiple Output (DMIMO) networks is a promising enabler to address the challenges of high traffic demand in future wireless networks. A limiting factor that is directly related to the performance of these systems is the overhead signaling required for distributing data and control information among the network elements. In this paper, the concept of orthogonal partitioning is extended to D-MIMO networks employing joint multi-user beamforming, aiming to maximize the effective sum-rate, i.e., the actual transmitted information data. Furthermore, in order to comply with practical requirements, the overhead subframe size is considered to be constrained. In this context, a novel formulation of constrained orthogonal partitioning is introduced as an elegant Knapsack optimization problem, which allows the derivation of quick and accurate solutions. Several numerical results give insight into the capabilities of D-MIMO networks and the actual sum-rate scaling under overhead constraints.Comment: IEEE Wireless Communications Letter

    Sustainable development and monument conservation

    Get PDF

    Environmental-Economic Modelling with Semantic Insufficiency and Factual Uncertainly

    Get PDF

    Outage Probability of Cognitive Relay Networks Over Generalized Fading Channels with Interference Constraints

    Get PDF
    AbstractIn this paper, we evaluate the outage probability (OP) of a cognitive relay network operating over generalized fading channels, modeled by the generalized-K and generalized-gamma distributions. In particular, secondary users, based on the underlay approach, cooperate employing decode-and-forward protocol, satisfying in any case an interference constraint on the primary destination users. The derived results include exact expressions as well as approximated ones for high values of the maximum allowed transmitted power. Numerical evaluated results show that the OP of cognitive relay networks is highly related with the fading/shadowing channel conditions as well as interfering constraints, with the latter resulting in higher OP compared to the conventional relaying systems

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Functional inequalities for modified Bessel functions

    Get PDF
    In this paper our aim is to show some mean value inequalities for the modified Bessel functions of the first and second kinds. Our proofs are based on some bounds for the logarithmic derivatives of these functions, which are in fact equivalent to the corresponding Tur\'an type inequalities for these functions. As an application of the results concerning the modified Bessel function of the second kind we prove that the cumulative distribution function of the gamma-gamma distribution is log-concave. At the end of this paper several open problems are posed, which may be of interest for further research.Comment: 14 page
    corecore