2 research outputs found

    The Helicobacter pylori CagY Protein Drives Gastric Th1 and Th17 Inflammation and B Cell Proliferation in Gastric MALT Lymphoma

    Get PDF
    Background: the neoplastic B cells of the Helicobacter pylori-related low-grade gastric mucosa-associated lymphoid tissue (MALT) lymphoma proliferate in response to H. pylori, however, the nature of the H. pylori antigen responsible for proliferation is still unknown. The purpose of the study was to dissect whether CagY might be the H. pylori antigen able to drive B cell proliferation. Methods: the B cells and the clonal progeny of T cells from the gastric mucosa of five patients with MALT lymphoma were compared with those of T cell clones obtained from five H. pylori-infected patients with chronic gastritis. The T cell clones were assessed for their specificity to H. pylori CagY, cytokine profile and helper function for B cell proliferation. Results: 22 of 158 CD4(+) (13.9%) gastric clones from MALT lymphoma and three of 179 CD4(+) (1.7%) clones from chronic gastritis recognized CagY. CagY predominantly drives Interferon-gamma (IFN-gamma) and Interleukin-17 (IL-17) secretion by gastric CD4(+) T cells from H. pylori-infected patients with low-grade gastric MALT lymphoma. All MALT lymphoma-derived clones dose dependently increased their B cell help, whereas clones from chronic gastritis lost helper activity at T-to-B-cell ratios greater than 1. Conclusion: the results obtained indicate that CagY drives both B cell proliferation and T cell activation in gastric MALT lymphomas

    Interleukin-17/Interleukin-21 and Interferon-g producing T cells specific for β2 Glycoprotein I in atherosclerosis inflammation of systemic lupus erythematosus patients with antiphospholipid syndrome

    Get PDF
    Systemic lupus erythematosus is frequently associated with antiphospholipid syndrome. Patients with lupus-antiphospholipid syndrome are characterized by recurrent arterial/venous thrombosis, miscarriages, and persistent presence of autoantibodies against phospholipid-binding proteins, such as β2-Glycoprotein I. We investigated the cytokine production induced by β2-Glycoprotein I in activated T cells that infiltrate in vivo atherosclerotic lesions of lupus-antiphospholipid syndrome patients. We examined the helper function of β2-Glycoprotein I-specific T cells for the tissue factor production, as well as their cytolytic potential and their helper function for antibody production. Lupus-antiphospholipid syndrome patients harbor in vivo activated CD4+ T cells that recognize β2-Glycoprotein I in atherosclerotic lesions. β2-Glycoprotein I induces T cell proliferation and expression of both Interleukin-17/Interleukin-21 and Interferon-γ in plaque-derived T cell clones. β2-Glycoprotein I-specific T cells display strong help for monocyte tissue factor production, and promote antibody production in autologous B cells. Moreover, plaque-derived β2-Glycoprotein I-specific CD4+ T lymphocytes express both perforin-mediated and Fas/FasLigand-mediated-cytotoxicity. Altogether, our results indicate that β2-Glycoprotein I is able to elicit a local Interleukin-17/Interleukin-21 and Interferon-γ inflammation in lupus-antiphospholipid syndrome patients that might lead, if unabated, to plaque instability and subsequent arterial thrombosis, suggesting that the T helper 17/T helper 1 pathway may represent a novel target for the prevention and treatment of the disease
    corecore