11,424 research outputs found

    The Arbitrary Trajectory Quantization Method

    Full text link
    The arbitrary trajectory quantization method (ATQM) is a time dependent approach to quasiclassical quantization based on the approximate dual relationship that exists between the quantum energy spectra and classical periodic orbits. It has recently been shown however, that, for polygonal billiards, the periodicity criterion must be relaxed to include closed almost-periodic (CAP) orbit families in this relationship. In light of this result, we reinvestigate the ATQM and show that at finite energies, a smoothened quasiclassical kernel corresponds to the modified formula that includes CAP families while the delta function kernel corresponding to the periodic orbit formula is recovered at high energies. Several clarifications are also provided.Comment: revtex, ps figure

    Groupwise Maximin Fair Allocation of Indivisible Goods

    Full text link
    We study the problem of allocating indivisible goods among n agents in a fair manner. For this problem, maximin share (MMS) is a well-studied solution concept which provides a fairness threshold. Specifically, maximin share is defined as the minimum utility that an agent can guarantee for herself when asked to partition the set of goods into n bundles such that the remaining (n-1) agents pick their bundles adversarially. An allocation is deemed to be fair if every agent gets a bundle whose valuation is at least her maximin share. Even though maximin shares provide a natural benchmark for fairness, it has its own drawbacks and, in particular, it is not sufficient to rule out unsatisfactory allocations. Motivated by these considerations, in this work we define a stronger notion of fairness, called groupwise maximin share guarantee (GMMS). In GMMS, we require that the maximin share guarantee is achieved not just with respect to the grand bundle, but also among all the subgroups of agents. Hence, this solution concept strengthens MMS and provides an ex-post fairness guarantee. We show that in specific settings, GMMS allocations always exist. We also establish the existence of approximate GMMS allocations under additive valuations, and develop a polynomial-time algorithm to find such allocations. Moreover, we establish a scale of fairness wherein we show that GMMS implies approximate envy freeness. Finally, we empirically demonstrate the existence of GMMS allocations in a large set of randomly generated instances. For the same set of instances, we additionally show that our algorithm achieves an approximation factor better than the established, worst-case bound.Comment: 19 page

    Magnetocaloric properties of nanocrystalline La0.125_{0.125}Ca0.875_{0.875}MnO3_{3}

    Full text link
    Some recent experimental studies show the invisibility of antiferromagnetic transition in the cases of manganites when their particle size is reduced to nanometer scale. In complete contrast to these cases, we have observed the signature of antiferromagnetic transition in the magnetocaloric properties of nanocrystalline La0.125_{0.125}Ca0.875_{0.875}MnO3_{3} of average particle size 70 and 60 nm similar to its polycrystalline bulk form. The system exhibit inverse magnetocaloric effect in its polycrystalline and nanocrystalline form. An extra ferromagnetic phase is stabilized at low temperature for the sample with particle size ∼60\sim 60 nm.Comment: 3 Figure

    Nonlocal Gravitational Models and Exact Solutions

    Full text link
    A nonlocal gravity model with a function f(□−1R)f(\Box^{-1} R), where □\Box is the d'Alembert operator, is considered. The algorithm, allowing to reconstruct f(□−1R)f(\Box^{-1} R), corresponding to the given Hubble parameter and the state parameter of the matter, is proposed. Using this algorithm, we find the functions f(□−1R)f(\Box^{-1} R), corresponding to de Sitter solutions.Comment: 5 pages, v2: refs. added, to appear in the proceedings of the International Workshop "Supersymmetries and Quantum Symmetries" (SQS'2011), Dubna, Russia, July 18-23, 2011, http://theor.jinr.ru/sqs/2011

    Periodic Orbits and Spectral Statistics of Pseudointegrable Billiards

    Full text link
    We demonstrate for a generic pseudointegrable billiard that the number of periodic orbit families with length less than ll increases as πb0l2/⟨a(l)⟩\pi b_0l^2/\langle a(l) \rangle, where b0b_0 is a constant and ⟨a(l)⟩\langle a(l) \rangle is the average area occupied by these families. We also find that ⟨a(l)⟩\langle a(l) \rangle increases with ll before saturating. Finally, we show that periodic orbits provide a good estimate of spectral correlations in the corresponding quantum spectrum and thus conclude that diffraction effects are not as significant in such studies.Comment: 13 pages in RevTex including 5 figure

    Tunneling magnetoresistance in (La,Pr,Ca)MnO3 nanobridges

    Full text link
    The manganite (La,Pr,Ca)MnO3 is well known for its micrometer scale phase separation into coexisting ferromagnetic metallic and antiferromagnetic insulating (AFI) regions. Fabricating bridges with widths smaller than the phase separation length scale has allowed us to probe the magnetic properties of individual phase separated regions. We observe tunneling magnetoresistance across naturally occurring AFI tunnel barriers separating adjacent ferromagnetic regions spanning the width of the bridges. Further, near the Curie temperature, a magnetic field induced metal-to-insulator transition among a discrete number of regions within the narrow bridges gives rise to abrupt and colossal low-field magnetoresistance steps at well defined switching fields.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Collapse of a Bose gas: kinetic approach

    Full text link
    We have analytically explored temperature dependence of critical number of particles for the collapse of a harmonically trapped attractively interacting Bose gas below the condensation point by introducing a kinetic approach within the Hartree-Fock approximation. The temperature dependence obtained by this easy approach is consisted with that obtained from the scaling theory.Comment: Brief Report, 4 pages, 1 figure, Accepted in Pramana-Journal of Physic

    Modification of the Charge ordering in Pr1/2_{1/2}Sr1/2_{1/2}MnO3_{3} Nanoparticles

    Full text link
    Transport and magnetic properties have been studied in two sets of sol-gel prepared Pr1/2_{1/2}Sr1/2_{1/2}MnO3_{3} nanoparticles having average particle size of 30 nm and 45 nm. Our measurements suggest that the formation of charge ordered state is largely affected due to lowering of particle size, but the ferromagnetic transition temperature (TCT_{C}) remains unaffected.Comment: Accepted in J. Appl. Phy
    • …
    corecore