8,428 research outputs found

    Towards diagnosing hybrid systems

    Get PDF
    This paper reports on the findings of an on-going project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers which experience abrupt, partial or full failure of component devices. The problem we address is: given a hybrid model of system behavior, a history of executed controller actions, and a history of observations, including an observation of behavior that is aberrant relative to the model of expected behavior, determine what fault occurred to have caused the aberrant behavior. Determining a diagnosis can be cast as a search problem to find the most likely model for the data. Unfortunately, the search space is extremely large. To reduce search space size and to identify an initial set of candidate diagnoses, we propose to exploit techniques originally applied to qualitative diagnosis of continuous systems. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA’s Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

    Quantum logic gates using Stark shifted Raman transitions in a cavity

    Get PDF
    We present a scheme to realise the basic two-quibit logic gates such as quantum phase gate and controlle-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts which are as important as the terms leading to two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement.Comment: 5 pages, 1 figure, RevTeX4, Text is modifie

    Opinion dynamics model with domain size dependent dynamics: novel features and new universality class

    Full text link
    A model for opinion dynamics (Model I) has been recently introduced in which the binary opinions of the individuals are determined according to the size of their neighboring domains (population having the same opinion). The coarsening dynamics of the equivalent Ising model shows power law behavior and has been found to belong to a new universality class with the dynamic exponent z=1.0±0.01z=1.0 \pm 0.01 and persistence exponent θ≃0.235\theta \simeq 0.235 in one dimension. The critical behavior has been found to be robust for a large variety of annealed disorder that has been studied. Further, by mapping Model I to a system of random walkers in one dimension with a tendency to walk towards their nearest neighbour with probability ϵ\epsilon, we find that for any ϵ>0.5\epsilon > 0.5, the Model I dynamical behaviour is prevalent at long times.Comment: 12 pages, 10 figures. To be published in "Journal of Physics : Conference Series" (2011

    First-Order Reorientation of the Flux-Line Lattice in CaAlSi

    Full text link
    The flux line lattice in CaAlSi has been studied by small angle neutron scattering. A well defined hexagonal flux line lattice is seen just above Hc1 in an applied field of only 54 Oe. A 30 degree reorientation of this vortex lattice has been observed in a very low field of 200 Oe. This reorientation transition appears to be of first-order and could be explained by non-local effects. The magnetic field dependence of the form factor is well described by a single penetration depth of 1496(1) angstroms and a single coherence length of 307(1) angstroms at 2 K. At 1.5 K the penetration depth anisotropy is 2.7(1) with the field applied perpendicular to the c axis and agrees with the coherence length anisotropy determined from critical field measurements.Comment: 5 pages including 6 figures, to appear in Physical Review Letter

    Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters

    Get PDF
    Cache timing attacks use shared caches in multi-core processors as side channels to extract information from victim processes. These attacks are particularly dangerous in cloud infrastructures, in which the deployed countermeasures cause collateral effects in terms of performance loss and increase in energy consumption. We propose to monitor the victim process using an independent monitoring (detector) process, that continuously measures selected Performance Monitoring Counters (PMC) to detect the presence of an attack. Ad-hoc countermeasures can be applied only when such a risky situation arises. In our case, the victim process is the AES encryption algorithm and the attack is performed by means of random encryption requests. We demonstrate that PMCs are a feasible tool to detect the attack and that sampling PMCs at high frequencies is worse than sampling at lower frequencies in terms of detection capabilities, particularly when the attack is fragmented in time to try to be hidden from detection
    • …
    corecore