768 research outputs found

    Homogeneous Mercury Oxidation under Simulated Flue Gas of Oxy-coal Combustion

    Get PDF
    This study investigated the effects of oxy-coal combustion on Hg-oxidation by HCl using simulated flue gas. Experiments were conducted with different carrier gases that one might find in oxy-coal combustion and conventional coal combustion. The extents of Hg-oxidation in pure CO2, pure N2 and air were also studied for comparison. Our experimental results demonstrated that CO2 weakly assisted Hg-oxidation by HCl; however, its significance was outweighed by the presence of O2. For all carrier gases, the presence of NO or H2O inhibited Hg-oxidation. The inhibitory effects strongly depended on concentrations of NO, but not moisture content. The synergistic inhibitory effects were shown when both NO and H2O were present together. The extents of Hg-oxidation were not significantly different for O2-N2, O2-N2-CO2 and O2-CO2 gas mixtures for all conditions investigated in this study

    Mining Frequent Itemsets Using Genetic Algorithm

    Full text link
    In general frequent itemsets are generated from large data sets by applying association rule mining algorithms like Apriori, Partition, Pincer-Search, Incremental, Border algorithm etc., which take too much computer time to compute all the frequent itemsets. By using Genetic Algorithm (GA) we can improve the scenario. The major advantage of using GA in the discovery of frequent itemsets is that they perform global search and its time complexity is less compared to other algorithms as the genetic algorithm is based on the greedy approach. The main aim of this paper is to find all the frequent itemsets from given data sets using genetic algorithm

    Non-invasive aerosol delivery and transport of gold nanoparticles to the brain

    Get PDF
    Targeted delivery of nanoscale carriers containing packaged payloads to the central nervous system has potential use in many diagnostic and therapeutic applications. Moreover, understanding of the bio-interactions of the engineered nanoparticles used for tissue-specific delivery by non-invasive delivery approaches are also of paramount interest. Here, we have examined this issue systematically in a relatively simple invertebrate model using insects. We synthesized 5 nm, positively charged gold nanoparticles (AuNPs) and targeted their delivery using the electrospray aerosol generator. Our results revealed that after the exposure of synthesized aerosol to the insect antenna, AuNPs reached the brain within an hour. Nanoparticle accumulation in the brain increased linearly with the exposure time. Notably, electrophysiological recordings from neurons in the insect brain several hours after exposure did not show any significant alterations in their spontaneous and odor-evoked spiking properties. Taken together, our findings reveal that aerosolized delivery of nanoparticles can be an effective non-invasive approach for delivering nanoparticles to the brain, and also presents an approach to monitor the short-term nano-biointeractions

    TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.)

    Get PDF
    AbstractTiO2 nanoparticle (NPs) biosynthesis is a low cost, ecofriendly approach developed using the fungi Aspergillus flavus TFR 7. To determine whether TiO2 NPs is suitable for nutrient, we conducted a two part study; biosynthesis of TiO2 NP and evaluates their influence on mung bean. The characterized TiO2 NPs were foliar sprayed at 10mgL−1 concentration on the leaves of 14 days old mung bean plants. A significant improvement was observed in shoot length (17.02%), root length (49.6%), root area (43%), root nodule (67.5%), chlorophyll content (46.4%) and total soluble leaf protein (94%) as a result of TiO2 NPs application. In the rhizosphere microbial population increased by 21.4–48.1% and activity of acid phosphatase (67.3%), alkaline phosphatase (72%), phytase (64%) and dehydrogenase (108.7%) enzyme was observed over control in six weeks old plants owing to application of TiO2 NPs. A possible mechanism has also been hypothesized for TiO2 NPs biosynthesis

    DUAL WIDEBAND AND HIGH GAIN MICROSTRIP ANTENNA FOR WIRELESS SYSTEM

    Get PDF
    In this paper dual wideband high gain circular shaped microstrip antenna with modified ground plane is presented for wireless communication systems. The overall dimension of the proposed antenna is 50 x 40 x 1.6 mm3. The radiating element consists of circular shaped patch which is excited by microstrip feed-line printed on FR4 epoxy substrate. The ground plane is on the other side of the substrate having a rectangular ring shape to enhance the peak gain of the antenna. The proposed antenna exhibits two wide fractional bandwidths (based on ≤ -10 dB) of 61.1% (ranging from 2.0 to 3.8 GHz, centred at 2.88 GHz) and 53.37% (ranging from 5.48 to 9.6 GHz, centred at 7.44 GHz). The measured peak gain achieved is 8.25 dBi at 8.76 GHz. The measured impedance bandwidth and gain suffice all the commercial bands of wireless systems such as 4G LTE band-40, Bluetooth, Wi-Fi, WLAN, WiMAX, C-band, and X-band. The measured results are experimentally tested and verified with simulated results. A reasonable agreement is found between them

    A new (k,n) verifiable secret image sharing scheme (VSISS)

    Get PDF
    AbstractIn this paper, a new (k,n) verifiable secret image sharing scheme (VSISS) is proposed in which third order LFSR (linear-feedback shift register)-based public key cryptosystem is applied for the cheating prevention and preview before decryption. In the proposed scheme the secret image is first partitioned into several non-overlapping blocks of k pixels. Every k pixel is then used to form m=⌈k/4⌉+1 pixels of one encrypted share. The original secret image can be reconstructed by gathering any k or more encrypted shared images. The experimental results show that the proposed VSISS is an efficient and safe method

    Mechanistic-empirical Design of Perpetual Road Pavement Using Strain-based Design Approach

    Get PDF
    Present paper deals with the development of a Mechanistic-Empirical model of the strain-based design of perpetual road pavement using Odemark's principle. The bituminous pavement which can withstand minimum design traffic of 300 msa has been classified as perpetual pavement in this paper. The pavement has been considered as a three-layered system with a top layer of bituminous mix followed by unbound granular materials which rest on soil subgrade. The constituent bituminous layer thickness in the pavement has been determined by limiting the radial tensile strain at the bottom of the bituminous layer against fatigue and the vertical compressive strain at the top of the subgrade against rutting. The allowable strain against rutting and fatigue has been used in the present analysis from mechanistic-empirical correlations recommended in IRC:37-2018. The pavement section has been transformed into a homogeneous system by Odemark's method for application of Boussinesq's theory. To validate the thickness of the perpetual pavement, the strain at different layer interfaces in the pavement was compared using IITPAVE software, which shows the pavement section using present method is safe against rutting but marginally fails under fatigue. Moreover, conventional pavement thickness obtained using IRC:37-2018 were compared with the present method, which shows reasonably good convergence. It has been found that the bituminous layer thickness in a layered system of pavement seems to be more sensitive to fatigue than rutting. In this backdrop, modified fatigue and rutting strain values have been recommended for the design of perpetual road pavement
    corecore