2,648 research outputs found
Unified Angular Momentum of Dyons
Unified quaternionic angular momentum for the fields of dyons and
gravito-dyons has been developed and the commutation relations for dynamical
variables are obtained in compact and consistent manner. Demonstrating the
quaternion forms of unified fields of dyons (electromagnetic fields) and
gravito-dyons (gravito-Heavisidian fields of linear gravity), corresponding
quantum equations are reformulated in compact, simpler and manifestly covariant
way
Generalized Gravi-Electromagnetism
A self consistant and manifestly covariant theory for the dynamics of four
charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has
been developed in simple, compact and consistent manner. Starting with an
invariant Lagrangian density and its quaternionic representation, we have
obtained the consistent field equation for the dynamics of four charges. It has
been shown that the present reformulation reproduces the dynamics of individual
charges (masses) in the absence of other charge (masses) as well as the
generalized theory of dyons (gravito - dyons) in the absence gravito - dyons
(dyons). key words: dyons, gravito - dyons, quaternion PACS NO: 14.80H
Quaternion Gravi-Electromagnetism
Defining the generalized charge, potential, current and generalized fields as
complex quantities where real and imaginary parts represent gravitation and
electromagnetism respectively, corresponding field equation, equation of motion
and other quantum equations are derived in manifestly covariant manner. It has
been shown that the field equations are invariant under Lorentz as well as
duality transformations. It has been shown that the quaternionic formulation
presented here remains invariant under quaternion transformations.Comment: Key Words: Quaternion, dyons, gravito-dyons, gravi-electromagnetism.
PACS No.: 04.90. +e ; 14.80. H
Quaternion Analysis for Generalized Electromagnetic Fields of Dyons in Isotropic Medium
Quaternion analysis of time dependent Maxwell's equations in presence of
electric and magnetic charges has been developed and the solutions for the
classical problem of moving charges (electric and magnetic) are obtained in
unique, simple and consistent manner
Quaternion Octonion Reformulation of Quantum Chromodynamics
We have made an attempt to develop the quaternionic formulation of Yang -
Mill's field equations and octonion reformulation of quantum chromo dynamics
(QCD). Starting with the Lagrangian density, we have discussed the field
equations of SU(2) and SU(3) gauge fields for both cases of global and local
gauge symmetries. It has been shown that the three quaternion units explain the
structure of Yang- Mill's field while the seven octonion units provide the
consistent structure of SU(3)_{C} gauge symmetry of quantum chromo dynamics
Mass function and dynamical study of the open clusters Berkeley 24 and Czernik 27
We present a photometric study of the open clusters Berkeley 24 (Be
24) and Czernik 27 (Cz 27). The radii of the clusters are determined as
2\farcm7 and 2\farcm3 for Be 24 and Cz 27, respectively. We use the Gaia Data
Release 2 (GDR2) catalogue to estimate the mean proper motions for the
clusters. We found the mean proper motion of Be 24 as mas
yr and mas yr in right ascension and declination
for Be 24 and mas yr and mas yr for
Cz 27. We used probable cluster members selected from proper motion data for
the estimation of fundamental parameters. We infer reddenings =
mag and mag for the two clusters. Analysis of
extinction curves towards the two clusters show that both have normal
interstellar extinction laws in the optical as well as in the near-IR band.
From the ultraviolet excess measurement, we derive metallicities of [Fe/H]=
dex and dex for the clusters Be 24 and Cz 27,
respectively. The distances, as determined from main sequence fitting, are
kpc and kpc. The comparison of observed CMDs with
isochrones, leads to an age of Gyr and Gyr for
Be 24 and Cz 27, respectively.
In addition to this, we have also studied the mass function and dynamical
state of these two clusters for the first time using probable cluster members.
The mass function is derived after including the corrections for data
incompleteness and field star contamination. Our analysis shows that both
clusters are now dynamically relaxedComment: 16 pages including 8 tables. 22 figures. Accepted by MNRA
Estimation of genetic diversity among sugarcane (Saccharum species complex) clones
he experimental materials consisted of 36 sugarcane clones including two checks (Co Pant 97222 and Co Pant 3220). Analysis of variance revealed significant differences among all the clones for all the traits under study namely no. of millable canes, cane height, single cane weight, juice sucrose percent , purity percent , cane yield and CCS yield except cane thickness, juice brix and juice extraction percent. The divergence studies through Mahalanobis D2 statistics grouped the 36 genotypes into eleven clusters. The maximum numbers of genotypes (21) were grouped in clusterI and the lowest (1) in cluster VI,VII,VIII,IX,X and XI. Members of cluster VII and XI (46.48) were found to be genetically most diverse on the basis of their inter cluster difference as opposite to clusters I and II (10.77) which are closely related. Cane height contributed maximum (15.397%) towards genetic divergence followed by Single cane weight (14.762%) and no. of millable cane (13.016%). These characters were considered to be most important for the genetic diversity. Lowest contribution was made by juice purity percent (4.286%) followed by Cane thickness(7.301%),Juice extraction percent (7.619%). Genetic diversity is important for sustainable production since greater losses of characteristics in any population limits its chances of survival. Little to no genetic diversity makes crops extremely susceptible to widespread biotic and abiotic stresses. Genetic diversity can be assessed by Mahalanobis D2 statistic, which is a morphometric method and a powerful tool in quantifying the degree of divergence at genotypic level
Generalized Electromagnetic fields in Chiral Medium
The time dependent Dirac-Maxwell's Equations in presence of electric and
magnetic sources are written in chiral media and the solutions for the
classical problem are obtained in unique simple and consistent manner. The
quaternion reformulation of generalized electromagnetic fields in chiral media
has also been developed in compact, simple and consistent manner
Chemical characterization of atmospheric particulate matter in Delhi, India, part II: Source apportionment studies using PMF 3.0
World Bank reports Delhi as a second most polluted megacity in the world for particulates pollution. In Delhi, PM10 (d ≤ 10 μm) aerosol samples were monitored throughout 2008 and their characterization for major chemical elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br, Sr, Ba, Pb, Cd, Sn and Sb) and ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+) have been documented in an earlier study. To resolve complexity in source apportionment for chemical constituents in PM10, UNMIX 6.0 and Positive Matrix Factorization (PMF 3.0) models are applied. Four factors were derived to explain routine sources of PM10 (crustal origin, road-traffic and secondary aerosols). Factor-1, designated as road-traffic source, has been determined by temporal correlation among Pb, Cu, Zn, Ni and V with strong correlation between Pb and Zn. This source factor-1 has shown more than 60% contribution to receptor site. Factor-2, referred as crustal origin due to strong inter-relationship among Si, Fe, Al, Ca and Mg, has also shown to be significant contribution to similar species in receptor matrix. Factor-3 ( NH4+, NO3-) has been differentiated due to contribution of secondary aerosols in the receptor region. This factor-3 has indicated major fraction of these ionic species for their uniform percentage variability, where mean values have been projected close to 75th percentile. Surprisingly, source factor-4 has explained the specific chloride source in the region with major contribution of 86%. For policymakers, results presented would serve as benchmark of source apportionments in Delhi
Quaternion-Octonion Unitary Symmetries and Analogous Casimir Operators
An attempt has been made to investigate the global SU(2) and SU(3) unitary
flavor symmetries systematically in terms of quaternion and octonion
respectively. It is shown that these symmetries are suitably handled with
quaternions and octonions in order to obtain their generators, commutation
rules and symmetry properties. Accordingly, Casimir operators for SU(2)and
SU(3) flavor symmetries are also constructed for the proper testing of these
symmetries in terms of quaternions and octonions
- …
