11,699 research outputs found

    Institutional Effects in a Simple Model of Educational Production

    Get PDF
    This paper presents a model of educational production that tries to make sense of recent evidence on effects of institutional arrangements on student performance. In a simple principal-agent framework, students choose their learning effort to maximize their net benefits, while the government chooses educational spending to maximize its net benefits. In the jointly determined equilibrium, schooling quality is shown to depend on several institutionally determined parameters. The impact on student performance of institutions such as central examinations, centralization versus school autonomy, teachers\u27 influence, parental influence, and competition from private schools is analyzed. Furthermore, the model can rationalize why positive resource effects may be lacking in educational production

    Spectral signatures of the Luttinger liquid to charge-density-wave transition

    Full text link
    Electron- and phonon spectral functions of the one-dimensional, spinless-fermion Holstein model at half filling are calculated in the four distinct regimes of the phase diagram, corresponding to an attractive or repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or polaronic insulator at strong coupling. The results obtained by means of kernel polynomial and systematic cluster approaches reveal substantially different physics in these regimes and further indicate that the size of the phonon frequency significantly affects the nature of the quantum Peierls phase transition.Comment: 5 pages, 4 figures; final version, accepted for publication in Physical Review

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (k≤mk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit m→∞m \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Measurements of Quasiparticle Tunneling Dynamics in a Bandgap-Engineered Transmon Qubit

    Full text link
    We have engineered the bandgap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time T1T_1 of the qubits is shown to be insensitive to this bandgap engineering. Operating at relatively low EJ/ECE_J/E_C makes the transmon transition frequency distinctly dependent on the charge parity, allowing us to detect the quasiparticles tunneling across the qubit junction. Quasiparticle kinetics have been studied by monitoring the frequency switching due to even/odd parity change in real time. It shows the switching time is faster than 10 μ\mus, indicating quasiparticle-induced relaxation has to be reduced to achieve T1T_1 much longer than 100 μ\mus.Comment: 11 pages, 8 figure

    Bondian frames to couple matter with radiation

    Full text link
    A study is presented for the non linear evolution of a self gravitating distribution of matter coupled to a massless scalar field. The characteristic formulation for numerical relativity is used to follow the evolution by a sequence of light cones open to the future. Bondian frames are used to endow physical meaning to the matter variables and to the massless scalar field. Asymptotic approaches to the origin and to infinity are achieved; at the boundary surface interior and exterior solutions are matched guaranteeing the Darmois--Lichnerowicz conditions. To show how the scheme works some numerical models are discussed. We exemplify evolving scalar waves on the following fixed backgrounds: A) an atmosphere between the boundary surface of an incompressible mixtured fluid and infinity; B) a polytropic distribution matched to a Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The conservation of energy, the Newman--Penrose constant preservation and other expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio

    Michaelis-Menten dynamics in protein subnetworks

    Get PDF
    To understand the behaviour of complex systems it is often necessary to use models that describe the dynamics of subnetworks. It has previously been established using projection methods that such subnetwork dynamics generically involves memory of the past, and that the memory functions can be calculated explicitly for biochemical reaction networks made up of unary and binary reactions. However, many established network models involve also Michaelis-Menten kinetics, to describe e.g. enzymatic reactions. We show that the projection approach to subnetwork dynamics can be extended to such networks, thus significantly broadening its range of applicability. To derive the extension we construct a larger network that represents enzymes and enzyme complexes explicitly, obtain the projected equations, and finally take the limit of fast enzyme reactions that gives back Michaelis-Menten kinetics. The crucial point is that this limit can be taken in closed form. The outcome is a simple procedure that allows one to obtain a description of subnetwork dynamics, including memory functions, starting directly from any given network of unary, binary and Michaelis-Menten reactions. Numerical tests show that this closed form enzyme elimination gives a much more accurate description of the subnetwork dynamics than the simpler method that represents enzymes explicitly, and is also more efficient computationally

    Polarized States and Domain Walls in Spinor Bose-Einstein Condensates

    Get PDF
    We study spin-polarized states and their stability in anti-ferromagnetic states of spinor (F=1) quasi-one-dimensional Bose-Einstein condensates. Using analytical approximations and numerical methods, we find various types of polarized states, including: patterns of the Thomas-Fermi type; structures with a pulse-shape in one component inducing a hole in the other components; states with holes in all three components; and domain walls. A Bogoliubov-de Gennes analysis reveals that families of these states contain intervals of a weak oscillatory instability, except for the domain walls, which are always stable. The development of the instabilities is examined by means of direct numerical simulations.Comment: 7 pages, 9 figures, submitted to Phys. Rev.

    Cavity QED in a molecular ion trap

    Full text link
    We propose an approach for studying quantum information and performing high resolution spectroscopy of rotational states of trapped molecular ions using an on-chip superconducting microwave resonator. Molecular ions have several advantages over neutral molecules. Ions can be loaded into deep (1 eV) RF traps and are trapped independent of the electric dipole moment of their rotational transition. Their charge protects them from motional dephasing and prevents collisional loss, allowing 1 s coherence times when used as a quantum memory, with detection of single molecules possible in <10 ms. An analysis of the detection efficiency and coherence properties of the molecules is presented.Comment: 9 pages, 1 figur
    • …
    corecore