18,382 research outputs found

    Bogoliubov transformations and exact isolated solutions for simple non-adiabatic Hamiltonians

    Get PDF
    We present a new method for finding isolated exact solutions of a class of non-adiabatic Hamiltonians of relevance to quantum optics and allied areas. Central to our approach is the use of Bogoliubov transformations of the bosonic fields in the models. We demonstrate the simplicity and efficiency of this method by applying it to the Rabi Hamiltonian.Comment: LaTeX, 16 pages, 1 figure. Minor additions and journal re

    Exact isolated solutions for the two-photon Rabi Hamiltonian

    Get PDF
    The two-photon Rabi Hamiltonian is a simple model describing the interaction of light with matter, with the interaction being mediated by the exchange of two photons. Although this model is exactly soluble in the rotating-wave approximation, we work with the full Hamiltonian, maintaining the non-integrability of the model. We demonstrate that, despite this non-integrability, there exist isolated, exact solutions for this model analogous to the so-called Juddian solutions found for the single-photon Rabi Hamiltonian. In so doing we use a Bogoliubov transformation of the field mode, as described by the present authors in an earlier publication.Comment: 15 Pages, 1 Figure, Latex, minor change

    Resonances, Unstable Systems and Irreversibility: Matter Meets Mind

    Full text link
    The fundamental time-reversal invariance of dynamical systems can be broken in various ways. One way is based on the presence of resonances and their interactions giving rise to unstable dynamical systems, leading to well-defined time arrows. Associated with these time arrows are semigroups bearing time orientations. Usually, when time symmetry is broken, two time-oriented semigroups result, one directed toward the future and one directed toward the past. If time-reversed states and evolutions are excluded due to resonances, then the status of these states and their associated backwards-in-time oriented semigroups is open to question. One possible role for these latter states and semigroups is as an abstract representation of mental systems as opposed to material systems. The beginnings of this interpretation will be sketched.Comment: 9 pages. Presented at the CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal; and at the Quantum Structures Association Meeting, 7-22 July 2004, University of Denver. Accepted for publication in the Internation Journal of Theoretical Physic

    Anisotropic Sliding Dynamics, Peak Effect, and Metastability in Stripe Systems

    Full text link
    A variety of soft and hard condensed matter systems are known to form stripe patterns. Here we use numerical simulations to analyze how such stripe states depin and slide when interacting with a random substrate and with driving in different directions with respect to the orientation of the stripes. Depending on the strength and density of the substrate disorder, we find that there can be pronounced anisotropy in the transport produced by different dynamical flow phases. We also find a disorder-induced "peak effect" similar to that observed for superconducting vortex systems, which is marked by a transition from elastic depinning to a state where the stripe structure fragments or partially disorders at depinning. Under the sudden application of a driving force, we observe pronounced metastability effects similar to those found near the order-disorder transition associated with the peak effect regime for three-dimensional superconducting vortices. The characteristic transient time required for the system to reach a steady state diverges in the region where the flow changes from elastic to disordered. We also find that anisotropy of the flow persists in the presence of thermal disorder when thermally-induced particle hopping along the stripes dominates. The thermal effects can wash out the effects of the quenched disorder, leading to a thermally-induced stripe state. We map out the dynamical phase diagram for this system, and discuss how our results could be explored in electron liquid crystal systems, type-1.5 superconductors, and pattern-forming colloidal assemblies.Comment: 18 pages, 22 postscript figure

    Structural Transitions, Melting, and Intermediate Phases for Stripe and Clump Forming Systems

    Full text link
    We numerically examine the properties of a two-dimensional system of particles which have competing long range repulsive and short range attractive interactions as a function of density and temperature. For increasing density, there are well defined transitions between a low density clump phase, an intermediate stripe phase, an anticlump phase, and a high density uniform phase. To characterize the transitions between these phases we propose several measures which take into account the different length scales in the system. For increasing temperature, we find an intermediate phase that is liquid-like on the short length scale of interparticle spacing but solid-like on the larger length scale of the clump, stripe, or anticlump pattern. This intermediate phase persists over the widest temperature range in the stripe state when the local particle lattice within an individual stripe melts well below the temperature at which the entire stripe structure breaks down, and is characterized by intra-stripe diffusion of particles without inter-stripe diffusion. This is followed at higher temperatures by the onset of inter-stripe diffusion in an anisotropic diffusion phase, and then by breakup of the stripe structure. We identify the transitions between these regimes through diffusion, specific heat, and energy fluctuation measurements, and find that within the intra-stripe liquid regime, the excess entropy goes into disordering the particle arrangements within the stripe rather than affecting the stripe structure itself. The clump and anticlump phases also show multiple temperature-induced diffusive regimes which are not as pronounced as those of the stripe phase.Comment: 13 pages, 17 postscript figure

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    General relativistic null-cone evolutions with a high-order scheme

    Full text link
    We present a high-order scheme for solving the full non-linear Einstein equations on characteristic null hypersurfaces using the framework established by Bondi and Sachs. This formalism allows asymptotically flat spaces to be represented on a finite, compactified grid, and is thus ideal for far-field studies of gravitational radiation. We have designed an algorithm based on 4th-order radial integration and finite differencing, and a spectral representation of angular components. The scheme can offer significantly more accuracy with relatively low computational cost compared to previous methods as a result of the higher-order discretization. Based on a newly implemented code, we show that the new numerical scheme remains stable and is convergent at the expected order of accuracy.Comment: 24 pages, 3 figure

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (k≀mk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit m→∞m \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    A new method for the determination of thin film porosity

    Get PDF
    Internal reflection spectroscopy may be used to determine presence of water in thin film pores. Presence of water in such pores is function of relative humidity and pore size. Thus, one can determine pore size by controlling humidity. Fluids with surface tension different from that of water can be used to detect pores
    • 

    corecore