8 research outputs found

    Exploring a New Paradigm for Accelerators and Large Experimental Apparatus Control Systems

    No full text
    International audienceThe integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-ons and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. In spite of this still narrow spectrum of employment, some software technologies developed for high performance web services, although originally intended and optimized for these particular applications, deserve some features that would allow their deeper integration in a control system and, eventually, use them to develop some of the control system's core components. In this paper we present the conclusion of the preliminary investigations of a new paradigm for an accelerator control system and associated machine data acquisition system (DAQ), based on a synergic combination of network distributed cache memory and a non-relational key/value database. We investigated these technologies with particular interest on performances, namely speed of data storage and retrieve for the network memory, data throughput and queries execution time for the database and, especially, how much this performances can benefit from their inherent scalability. The work has been developed in a collaboration between INFN-LNF and INFN-Roma Tor Vergata

    !CHAOS: A cloud of controls

    Get PDF
    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of abstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack

    W-MON: a wireless network of ionizing sensors for radiation monitoring in waste

    No full text
    With the aim of controlling the risk of releasing radioactive material together with ordinary waste, the Radiation Protection (RP) group at CERN is developing a fully automated network of wireless radiation sensors to provide remote and real- time monitoring of the radiation level of hundreds of waste containers located on the CERN sites. The system, based on the Internet of Things (IoT) paradigm, will be included in the existing CERN RP supervisory system, allowing online monitoring and continuous supervision. As proof of concept, a complete IoT architecture was successfully developed. A fully operational monitoring system was installed in a waste container equipped with eight wireless radiation sensors, which record and transmit the radiation measurements every hour to a dedicated custom server

    A distributed and interconnected network of sensors for environmental radiological monitoring

    No full text
    The W-MON project aims to improve and automatize the control of the presence of radioactive material in conventional waste containers at CERN using a distributed network of interconnected low-power radiation sensors. The key development is the integration of a lightweight but sensitive radiation sensor in a powerful network that allows continuous data recording, transfer and storage in a database for alarm triggering and subsequent data analysis. The Chiyoda D-shuttle personal dosimeter was used as proof-of-concept. Extensive tests performed with the commercial version of the D-shuttle showed that its robustness, stability under variable thermal conditions, high sensitivity and hourly dose logging capabilities make it a strong candidate for the project. To comply with the requirements of remote operation and wireless data transmission to a central server, a customized version of the D-shuttle has been developed. Two additional radiation sensors are also currently being considered. The sensors have been coupled to a custom-made communication board allowing for long-range low-power LoRa wireless data transmission. A centralized IoT (Internet of Things) end-to-end data architecture has been developed for real-time monitoring and visualization of the radiation level in waste containers before the final integration into REMUS, the overall CERN Radiation and Environment Monitoring Unified Supervision service

    Introducing a new paradigm for accelerators and large experimental apparatus control systems

    No full text
    The integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing distributed control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-ons and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. Despite this still narrow spectrum of employment, some software technologies developed for high-performance web services, although originally intended and optimized for these particular applications, deserve some features suggesting a deeper integration in a control system and, eventually, their use to develop some of the control system’s core components. In this paper, we present the conceptual design of a new control system for a particle accelerator and associated machine data acquisition system, based on a synergic combination of a nonrelational key/value database and network distributed object caching. The use of these technologies, to implement respectively continuous data archiving and data distribution between components, brought about the definition of a new control system concept offering a number of interesting features such as a high level of abstraction of services and components and their integration in a framework that can be seen as a comprehensive service provider that both graphical user interface applications and front-end controllers join for accessing and, to some extent, expanding its functionalities

    Introducing a new paradigm for accelerators and large experimental apparatus control systems

    No full text
    The integration of web technologies and web services has been, in the recent years, one of the major trends in upgrading and developing distributed control systems for accelerators and large experimental apparatuses. Usually, web technologies have been introduced to complement the control systems with smart add-ons and user friendly services or, for instance, to safely allow access to the control system to users from remote sites. Despite this still narrow spectrum of employment, some software technologies developed for high-performance web services, although originally intended and optimized for these particular applications, deserve some features suggesting a deeper integration in a control system and, eventually, their use to develop some of the control system’s core components. In this paper, we present the conceptual design of a new control system for a particle accelerator and associated machine data acquisition system, based on a synergic combination of a nonrelational key/value database and network distributed object caching. The use of these technologies, to implement respectively continuous data archiving and data distribution between components, brought about the definition of a new control system concept offering a number of interesting features such as a high level of abstraction of services and components and their integration in a framework that can be seen as a comprehensive service provider that both graphical user interface applications and front-end controllers join for accessing and, to some extent, expanding its functionalities

    An integrated infrastructure in support of software development

    Get PDF
    This paper describes the design and the current state of implementation of an infrastructure made available to software developers within the Italian National Institute for Nuclear Physics (INFN) to support and facilitate their daily activity. The infrastructure integrates several tools, each providing a well-identified function: project management, version control system, continuous integration, dynamic provisioning of virtual machines, efficiency improvement, knowledge base. When applicable, access to the services is based on the INFN-wide Authentication and Authorization Infrastructure. The system is being installed and progressively made available to INFN users belonging to tens of sites and laboratories and will represent a solid foundation for the software development efforts of the many experiments and projects that see the involvement of the Institute. The infrastructure will be beneficial especially for small- and medium-size collaborations, which often cannot afford the resources, in particular in terms of know-how, needed to set up such services. © Published under licence by IOP Publishing Ltd
    corecore