262 research outputs found

    Collective effects in cellular structure formation mediated by compliant environments: a Monte Carlo study

    Full text link
    Compliant environments can mediate interactions between mechanically active cells like fibroblasts. Starting with a phenomenological model for the behaviour of single cells, we use extensive Monte Carlo simulations to predict non-trivial structure formation for cell communities on soft elastic substrates as a function of elastic moduli, cell density, noise and cell position geometry. In general, we find a disordered structure as well as ordered string-like and ring-like structures. The transition between ordered and disordered structures is controlled both by cell density and noise level, while the transition between string- and ring-like ordered structures is controlled by the Poisson ratio. Similar effects are observed in three dimensions. Our results suggest that in regard to elastic effects, healthy connective tissue usually is in a macroscopically disordered state, but can be switched to a macroscopically ordered state by appropriate parameter variations, in a way that is reminiscent of wound contraction or diseased states like contracture.Comment: 45 pages, 7 postscript figures included, revised version accepted for publication in Acta Biomateriali

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include

    Effect of adhesion geometry and rigidity on cellular force distributions

    Full text link
    The behaviour and fate of tissue cells is controlled by the rigidity and geometry of their adhesive environment, possibly through forces localized to sites of adhesion. We introduce a mechanical model that predicts cellular force distributions for cells adhering to adhesive patterns with different geometries and rigidities. For continuous adhesion along a closed contour, forces are predicted to be localized to the corners. For discrete sites of adhesion, the model predicts the forces to be mainly determined by the lateral pull of the cell contour. With increasing distance between two neighboring sites of adhesion, the adhesion force increases because cell shape results in steeper pulling directions. Softer substrates result in smaller forces. Our predictions agree well with experimental force patterns measured on pillar assays.Comment: 4 pages, Revtex with 4 figure

    Focal adhesions as mechanosensors: the two-spring model

    Full text link
    Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.Comment: Latex, 17 pages, 5 postscript figures include

    Polaron and Bipolaron Defects in a Charge Density Wave: a Model for Lightly Doped BaBiO3

    Full text link
    BaBiO3 is a prototype ``charge ordering system'' forming interpenetrating sublattices with nominal valence Bi(3+) and Bi(5+). It can also be regarded as a three-dimensional version of a Peierls insulator, the insulating gap being a consequence of an ordered distortion of oxygen atoms. When holes are added to BaBiO3 by doping, it remains insulating until a very large hole concentration is reached, at which point it becomes superconducting. The mechanism for insulating behavior of more lightly-doped samples is formation of small polarons or bipolarons. These are self-organized point defects in the Peierls order parameter, which trap carriers in bound states inside the Peierls gap. We calculate properties of the polarons and bipolarons using the Rice-Sneddon model. Bipolarons are the stable defect; the missing pair of electrons come from an empty midgap state built from the lower Peierls band. Each bipolaron distortion also pulls down six localized states below the bottom of the unoccupied upper Peierls band. The activation energy for bipolaron hopping is estimated.Comment: 9 pages with 8 embedded figures. See also cond-mat/0108089, a paper of 5 pages on the related topic of self-trapped excitons in BaBiO

    Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs)

    Get PDF
    Background: Rap proteins from Bacilli directly target response regulators of bacterial two-component systems and modulate their activity. Their effects are controlled by binding of signaling peptides to an allosteric site. Hence Raps exemplify a class of monomeric signaling receptors, which we call switchable allosteric modulator proteins (SAMPs). These proteins have potential applications in diverse biomedical and biotechnical settings, but a quantitative understanding of the impact of molecular and cellular factors on signal transduction is lacking. Here we introduce mathematical models that elucidate how signals are propagated though the network upon receptor stimulation and control the level of active response regulator. Results: Based on a systematic parameter analysis of the models, we show that key features of the dose-response behavior at steady state are controlled either by the molecular properties of the modulator or the signaling context. In particular, we find that the biochemical activity (i.e. non-enzymatic vs. enzymatic) and allosteric properties of the modulator control the response amplitude. The Hill coefficient and the EC50 are controlled in addition by the relative ligand affinities. By tuning receptor properties, either graded or more switch-like (memory-less) response functions can be fashioned. Furthermore, we show that other contextual factors (e.g. relative concentrations of network components and kinase activity) have a substantial impact on the response, and we predict that there exists a modulator concentration which is optimal for response amplitude. Conclusion: We discuss data on Rap-Phr systems in B. subtilis to show how our models can contribute to an integrated view of SAMP signaling by combining biochemical, structural and physiological insights. Our results also suggest that SAMPs could be evolved or engineered to implement diverse response behaviors. However—without additional regulatory controls—they can generate rather variable cellular outputs

    Self-Trapped Exciton Defects in a Charge Density Wave: Electronic Excitations of BaBiO3

    Full text link
    In the previous paper, it was shown that holes doped into BaBiO3 self-trap as small polarons and bipolarons. These point defects are energetically favorable partly because they undo locally the strain in the charge-density-wave (Peierls insulator) ground state. In this paper the neutral excitations of the same model are discussed. The lowest electronic excitation is predicted to be a self-trapped exciton, consisting of an electron and a hole located on adjacent Bi atoms. This excitation has been seen experimentally (but not identified as such) via the Urbach tail in optical absorption, and the multi-phonon spectrum of the ``breathing mode'' seen in Raman scattering. These two phenomena occur because of the Franck-Condon effect associated with oxygen displacement in the excited state.Comment: 5 pages with 7 embedded figures. See also cond-mat/0108089 on polarons and bipolarons in BaBiO3 contains background informatio

    Effect of Poisson ratio on cellular structure formation

    Full text link
    Mechanically active cells in soft media act as force dipoles. The resulting elastic interactions are long-ranged and favor the formation of strings. We show analytically that due to screening, the effective interaction between strings decays exponentially, with a decay length determined only by geometry. Both for disordered and ordered arrangements of cells, we predict novel phase transitions from paraelastic to ferroelastic and anti-ferroelastic phases as a function of Poisson ratio.Comment: 4 pages, Revtex, 4 Postscript figures include

    Cell organization in soft media due to active mechanosensing

    Full text link
    Adhering cells actively probe the mechanical properties of their environment and use the resulting information to position and orient themselves. We show that a large body of experimental observations can be consistently explained from one unifying principle, namely that cells strengthen contacts and cytoskeleton in the direction of large effective stiffness. Using linear elasticity theory to model the extracellular environment, we calculate optimal cell organization for several situations of interest and find excellent agreement with experiments for fibroblasts, both on elastic substrates and in collagen gels: cells orient in the direction of external tensile strain, they orient parallel and normal to free and clamped surfaces, respectively, and they interact elastically to form strings. Our method can be applied for rational design of tissue equivalents. Moreover our results indicate that the concept of contact guidance has to be reevaluated. We also suggest that cell-matrix contacts are upregulated by large effective stiffness in the environment because in this way, build-up of force is more efficient.Comment: Revtex, 7 pages, 4 Postscript files include
    • …
    corecore