4,026 research outputs found

    Raman spectroscopy on etched graphene nanoribbons

    Full text link
    We investigate etched single-layer graphene nanoribbons with different widths ranging from 30 to 130 nm by confocal Raman spectroscopy. We show that the D-line intensity only depends on the edge-region of the nanoribbon and that consequently the fabrication process does not introduce bulk defects. In contrast, the G- and the 2D-lines scale linearly with the irradiated area and therefore with the width of the ribbons. We further give indications that the D- to G-line ratio can be used to gain information about the crystallographic orientation of the underlying graphene. Finally, we perform polarization angle dependent measurements to analyze the nanoribbon edge-regions

    Optically probing symmetry breaking in the chiral magnet Cu2OSeO3

    Get PDF
    We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfer gap. These crystal-field excitations are optically allowed due to the lack of inversion symmetry at the Cu sites. Optical polarization rotation measurements were used to study the structural chirality and magnetic order. The temperature dependence of the natural optical rotation, originating in the chiral crystal structure, provides evidence for a finite magneto-electric effect in the helimagnetic phase. We find a large magneto-optical susceptibility on the order of V(540nm)~10^4 rad/(T*m) in the helimagnetic phase and a maximum Faraday rotation of ~165deg/mm in the ferrimagnetic phase. The large value of V can be explained by considering spin cluster formation and the relative ease of domain reorientation in this metamagnetic material. The magneto-optical activity allows us to map the magnetic phase diagram, including the skyrmion lattice phase. In addition to this, we probe and discuss the nature of the various magnetic phase transitions in Cu2OSeO3.Comment: 9 pages, 10 figure

    Optimal Filling of Shapes

    Full text link
    We present filling as a type of spatial subdivision problem similar to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show that solutions correspond to sets of maximal n-balls. For polygons, we provide a heuristic for finding solutions of maximal discs. We consider the properties of ideal distributions of N discs as N approaches infinity. We note an analogy with energy landscapes.Comment: 5 page

    How to add a boundary condition

    Full text link
    Given a conformal QFT local net of von Neumann algebras B_2 on the two-dimensional Minkowski spacetime with irreducible subnet A\otimes\A, where A is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to B_2: we provide a procedure to construct a Boundary CFT net B of von Neumann algebras on the half-plane x>0, associated with A, and locally isomorphic to B_2. All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of B_2 to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S^1.Comment: 20 page
    corecore