1,257 research outputs found

    Involvement of nuclear NHERF1 in colorectal cancer progression.

    Get PDF
    NHERF1 (Na+/H+ exchanger regulatory factor 1) is expressed in the luminal membrane of many epithelia, and associated with proteins involved in tumor progression. Alterations of NHERF1 expression in different sites of metastatic colorectal cancer (mCRC) suggest a dynamic role of this protein in colon carcinogenesis. We focused on the observation of the altered expression of NHERF1 from non-neoplastic tissues to metastatic sites by immunohistochemistry. Moreover, we studied, by immunofluorescence, the colocalization between NHERF1 and the epidermal growth factor receptor (EGFR), whose overexpression is implicated in CRC progression. NHERF1 showed a different localization and expression in the examined sites. The distant non-neoplastic tissues showed NHERF1 mostly expressed at the apical membrane, while in surrounding non-neoplastic tissue decreased the apical membrane and increased cytoplasmic immunoreactivity. In adenomas a shift from apical membrane to cytoplasmic localization and nuclear expression were observed. Cytoplasmic staining in the tumor, and metastatic sites was stronger than surrounding non-neoplastic tissue. Furthermore, nuclear NHERF1 expression was noted in 80% of all samples and surprisingly, it appeared already in adenoma lesions, suggesting that NHERF1 represents an early marker of pre-morphological triggering of colorectal carcinogenesis. Then, in few tumors a positive direct correlation between membrane NHERF1 and EGFR expression was evidenced by their colocalization. Nuclear NHERF1 expression, present in the early stages of carcinogenesis and related with poor prognosis, may contribute to the onset of malignant phenotype. Specifically, we hypothesize the direct involvement of nuclear NHERF1 in both carcinogenesis and progression and its role as a potential colorectal cancer marke

    Mechanistic insights on the mode of action of an antiproliferative thiosemicarbazone-nickel complex revealed by an integrated chemogenomic profiling study

    Get PDF
    Thiosemicarbazones (TSC) and their metal complexes display diverse biological activities and are active against multiple pathological conditions ranging from microbial infections to abnormal cell proliferation. Ribonucleotide reductase (RNR) is considered one of the main targets of TSCs, yet, the existence of additional targets, differently responsible for the multifaceted activities of TSCs and their metal complexes has been proposed. To set the basis for a more comprehensive delineation of their mode of action, we chemogenomically profiled the cellular effects of bis(citronellalthiosemicarbazonato)nickel(II) [Ni(S-tcitr)2] using the unicellular eukaryote Saccharomyces cerevisiae as a model organism. Two complementary genomic phenotyping screens led to the identification of 269 sensitive and 56 tolerant deletion mutant strains and of 14 genes that when overexpressed make yeast cells resistant to an otherwise lethal concentration of Ni(S-tcitr)2. Chromatin remodeling, cytoskeleton organization, mitochondrial function and iron metabolism were identified as lead cellular processes responsible for Ni(S-tcitr)2 toxicity. The latter process, and particularly glutaredoxin-mediated iron loading of RNR, was found to be affected by Ni(S-tcitr)2. Given the multiple pathways regulated by glutaredoxins, targeting of these proteins by Ni(S-tcitr)2 can negatively affect various core cellular processes that may critically contribute to Ni(S-tcitr)2 cytotoxicity

    Exploring Coral Calcification by Calcium Carbonate Overgrowth Experiments

    Get PDF
    The Scleractinia coral biomineralization process is a representative example of a heterogeneous process of nudeation and growth of biogenic CaCO3 over a mineral phase. Indeed, even if the biomineralization process starts before settlement, the bulk formation of the skeleton takes place only when the larvae attach to a solid substrate, which can be Mg-calcite from coralline algae, and the following growth proceeds on the Mg-calcite surface of the formed baseplate of the planula. Despite this peculiarity and central role of the Mg-calcite substrate, the in vitro overgrowth of CaCO3 on single crystals of Mg-calcite, or calcite, in the presence of magnesium ions and the soluble organic matrix (SOM) extracted from coral skeletons has not been performed until now. In this study, the SOMs from Stylophora pistillata and Oculina patagonica skeletons were used in a set of overgrowth experiments. The overgrown CaCO3 was characterized by microscopic, diffractometric, and spectroscopic techniques. Our results showed that CaCO3 overgrowth in the presence of S. pistillata or O. patagonica SOM produces different effects. However, there appears to be a minor distinction between samples when magnesium ions are present in solution. Moreover, the Mg-calcite substrate appears to be a favorable substrate for the overgrowth of aragonite, differently from calcite. These observations fit with the observed settling of coral larvae on Mg-calcite-based substrates and with the in vivo observation that in the planula aragonite forms on first-formed Mg-calcite crystals. The overall results of this study highlight the importance of magnesium ions, either in the solution or in the substrate, in defining the shape, morphology, and polymorphism of biodeposited CaCO3. They also suggest a magnesium-dependent biological control on the deposition of coral skeletons

    Linkage Specific Fucosylation of Alpha-1-Antitrypsin in Liver Cirrhosis and Cancer Patients: Implications for a Biomarker of Hepatocellular Carcinoma

    Get PDF
    We previously reported increased levels of protein-linked fucosylation with the development of liver cancer and identified many of the proteins containing the altered glycan structures. One such protein is alpha-1-antitrypsin (A1AT). To advance these studies, we performed N-linked glycan analysis on the five major isoforms of A1AT and completed a comprehensive study of the glycosylation of A1AT found in healthy controls, patients with hepatitis C- (HCV) induced liver cirrhosis, and in patients infected with HCV with a diagnosis of hepatocellular carcinoma (HCC).Patients with liver cirrhosis and liver cancer had increased levels of triantennary glycan-containing outer arm (alpha-1,3) fucosylation. Increases in core (alpha-1,6) fucosylation were observed only on A1AT from patients with cancer. We performed a lectin fluorophore-linked immunosorbent assay using Aleuria Aurantia lectin (AAL), specific for core and outer arm fucosylation in over 400 patients with liver disease. AAL-reactive A1AT was able to detect HCC with a sensitivity of 70% and a specificity of 86%, which was greater than that observed with the current marker of HCC, alpha-fetoprotein. Glycosylation analysis of the false positives was performed; results indicated that these patients had increases in outer arm fucosylation but not in core fucosylation, suggesting that core fucosylation is cancer specific.This report details the stepwise change in the glycosylation of A1AT with the progression from liver cirrhosis to cancer and identifies core fucosylation on A1AT as an HCC specific modification

    Contribution of Genome-Wide HCV Genetic Differences to Outcome of Interferon-Based Therapy in Caucasian American and African American Patients

    Get PDF
    Background: Hepatitis C virus (HCV) has six major genotypes, and patients infected with genotype 1 respond less well to interferon-based therapy than other genotypes. African American patients respond to interferon α-based therapy at about half the rate of Caucasian Americans. The effect of HCV's genetic variation on treatment outcome in both racial groups is poorly understood. Methodology:We determined the near full-length pre-therapy consensus sequences from 94 patients infected with HCV genotype 1a or 1b undergoing treatment with peginterferon α-2a and ribavirin through the Virahep-C study. The sequences were stratified by genotype, race and treatment outcome to identify HCV genetic differences associated with treatment efficacy. Principal Findings:HCV sequences from patients who achieved sustained viral response were more diverse than sequences from non-responders. These inter-patient diversity differences were found primarily in the NS5A gene in genotype 1a and in core and NS2 in genotype 1b. These differences could not be explained by host selection pressures. Genotype 1b but not 1a African American patients had viral genetic differences that correlated with treatment outcome. Conclusions & Significance: Higher inter-patient viral genetic diversity correlated with successful treatment, implying that there are HCV genotype 1 strains with intrinsic differences in sensitivity to therapy. Core, NS3 and NS5A have interferonsuppressive activities detectable through in vitro assays, and hence these activities also appear to function in human patients. Both preferential infection with relatively resistant HCV variants and host-specific factors appear to contribute to the unusually poor response to therapy in African American patients. © 2010 Donlin et al

    Hepatic STAT1-Nuclear Translocation and Interleukin 28B Polymorphisms Predict Treatment Outcomes in Hepatitis C Virus Genotype 1-Infected Patients

    Get PDF
    We investigated associations between signal transducer and activator of transcription (STAT) 1 in pretreated liver tissues, interleukin (IL) 28B polymorphism and treatment response in hepatitis C virus (HCV)-infected patients treated with peginterferon and ribavirin.We performed immunostaining analysis of STAT1 in liver tissues and determined IL28B polymorphism at rs8099917. We then compared the results with treatment outcomes in HCV genotype 1 patients with high viral load who were receiving peginterferon plus ribavirin. In univariate analysis, younger age, white blood cell counts, virological responder, early virological responder (EVR), mild activity (A1) of liver inflammation grading, and lower STAT1 nuclear-stain of hepatocytes in zone 1, zone 2 and total zones of liver were associated with sustained virological responder (SVR). Multivariate analysis showed that EVR, age and hepatic STAT1 nuclear-stain in zone 2 of liver were independent predictors of SVR. It was also revealed that IL28B and STAT1-nuclear translocation in hepatocytes are independent predictors of response to treatment with peginterferon and ribavirin in chronic hepatitis C patients.Concomitant assessment of lower STAT1 nuclear-stain of hepatocytes and IL28B polymorphism is useful for prediction of SVR in HCV genotype 1 patients

    Double gamers—can modified natural regulators of higher plants act as antagonists against phytopathogens? The case of jasmonic acid derivatives

    Get PDF
    As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae, F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani, Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi
    • …
    corecore