164 research outputs found
Recommended from our members
Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study.
OBJECTIVES: To describe the characteristics of children and adolescents affected by an outbreak of Kawasaki-like multisystem inflammatory syndrome and to evaluate a potential temporal association with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. DESIGN: Prospective observational study. SETTING: General paediatric department of a university hospital in Paris, France. PARTICIPANTS: 21 children and adolescents (aged β€18 years) with features of Kawasaki disease who were admitted to hospital between 27 April and 11 May 2020 and followed up until discharge by 15 May 2020. MAIN OUTCOME MEASURES: The primary outcomes were clinical and biological data, imaging and echocardiographic findings, treatment, and outcomes. Nasopharyngeal swabs were prospectively tested for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) and blood samples were tested for IgG antibodies to the virus. RESULTS: 21 children and adolescents (median age 7.9 (range 3.7-16.6) years) were admitted with features of Kawasaki disease over a 15 day period, with 12 (57%) of African ancestry. 12 (57%) presented with Kawasaki disease shock syndrome and 16 (76%) with myocarditis. 17 (81%) required intensive care support. All 21 patients had noticeable gastrointestinal symptoms during the early stage of illness and high levels of inflammatory markers. 19 (90%) had evidence of recent SARS-CoV-2 infection (positive RT-PCR result in 8/21, positive IgG antibody detection in 19/21). All 21 patients received intravenous immunoglobulin and 10 (48%) also received corticosteroids. The clinical outcome was favourable in all patients. Moderate coronary artery dilations were detected in 5 (24%) of the patients during hospital stay. By 15 May 2020, after 8 (5-17) days of hospital stay, all patients were discharged home. CONCLUSIONS: The ongoing outbreak of Kawasaki-like multisystem inflammatory syndrome among children and adolescents in the Paris area might be related to SARS-CoV-2. In this study an unusually high proportion of the affected children and adolescents had gastrointestinal symptoms, Kawasaki disease shock syndrome, and were of African ancestry
An optical/NIR survey of globular clusters in early-type galaxies III. On the colour bimodality of GC systems
The interpretation that bimodal colour distributions of globular clusters
(GCs) reflect bimodal metallicity distributions has been challenged.
Non-linearities in the colour to metallicity conversions caused by the
horizontal branch (HB) stars may be responsible for transforming a unimodal
metallicity distribution into a bimodal (optical) colour distribution. We study
optical/near-infrared (NIR) colour distributions of the GC systems in 14 E/S0
galaxies. We test whether the bimodal feature, generally present in optical
colour distributions, remains in the optical/NIR ones. The latter colour
combination is a better metallicity proxy than the former. We use KMM and GMM
tests to quantify the probability that different colour distributions are
better described by a bimodal, as opposed to a unimodal distribution. We find
that double-peaked colour distributions are more commonly seen in optical than
in optical/NIR colours. For some of the galaxies where the optical (g-z)
distribution is clearly bimodal, the (g-K) and (z-K) distributions are better
described by a unimodal distribution. The two most cluster-rich galaxies in our
sample, NGC4486 and NGC4649, show some interesting differences. The (g-K)
distribution of NGC4649 is better described by a bimodal distribution, while
this is true for the (g-K) distribution of NGC4486 GCs only if restricted to a
brighter sub-sample with small K-band errors (< 0.05 mag). Formally, the K-band
photometric errors cannot be responsible for blurring bimodal metallicity
distributions to unimodal (g-K) colour distributions. However, simulations
including the extra scatter in the colour-colour diagrams (not fully accounted
for in the photometric errors) show that such scatter may contribute to the
disappearance of bimodality in (g-K) for the full NGC4486 sample. For the less
cluster-rich galaxies results are inconclusive due to poorer statistics.
[Abridged]Comment: A&A accepted, 15 pages, 10 figures, 4 table
Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer
Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors
Tyrosine kinase signalling in breast cancer: Modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates
The past decade has seen the definition of key signalling pathways downstream of receptor tyrosine kinases (RTKs) in terms of their components and the protein-protein interactions that facilitate signal transduction. Given the strong evidence that links signalling by certain families of RTKs to the progression of breast cancer, it is not surprising that the expression profile of key downstream signalling intermediates in this disease has also come under scrutiny, particularly because some exhibit transforming potential or amplify mitogenic signalling pathways when they are overexpressed. Reflecting the diverse cellular processes regulated by RTKs, it is now clear that altered expression of such signalling proteins in breast cancer may influence not only cellular proliferation (eg Grb2) but also the invasive properties of the cancer cells (eg EMS1/cortactin)
Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines
Introduction: Overexpression of the receptor tyrosine kinase HER2 has been reported in around 25% of human breast cancers, usually indicating a poor prognosis. As a result, HER2 has become a popular target for therapy. However, despite recent advances in HER2 targeted therapy, many patients still experience primary and secondary resistance to such treatments. It is therefore important to understand the underlying mechanism of resistance and to develop more effective therapeutic interventions for breast cancer.
Methods: The sensitivity of a panel of seven breast cancer cell lines to treatment with various types HER-family inhibitors alone, or in combination with a selection of other tyrosine kinase inhibitors (TKIs) or chemotherapeutic agents was determined using the Sulforhodamine B colorimetric assay. Receptor expression, cell-cycle distribution, cell signalling and cell migration were determined using flow cytometry, Western blot and Incucyte Zoom Live-Cell Analysis System respectively.
Results: Overall, breast cancer cells were more sensitive to treatment with the irreversible pan-HER family inhibitors, particularly afatinib and neratinib, than treatment with the first-generation reversible inhibitors. Of three HER-2 overexpressing cell lines in this panel, SKBr3 and BT474 were highly sensitive to treatment with HER-family inhibitors (IC50s as low as 3 nM), while MDA-MB-453 was relatively resistant (lowest IC50 = 0.11 ΞΌM). When the HER-family inhibitors were combined with other agents such as NVP-AEW541 (an IGF-1R inhibitor), dasatinib (a Src inhibitor) or crizotinib (a c-Met/ALK inhibitor), such combination produced synergistic effects in some of the cell lines examined. Interestingly, co-targeting of Src and HER-family members in MDA-MB-453 cells led to synergistic growth inhibition, suggesting the importance of Src in mediating resistance to HER2-targeting agents. Finally, treatment with the irreversible HER family blockers and dasatinib were also most effective at inhibiting the migration of breast cancer cells.
Conclusion: We concluded that the irreversible inhibitors of HER-family members are generally more effective at inhibiting growth, downstream signalling and migration compared with reversible inhibitors, and that combining HER-family inhibitors with other TKIs such as dasatinib may have therapeutic advantages in certain breast cancer subtypes and warrants further investigation
Recommended from our members
Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992
The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III)
Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs
Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-Aβ/β allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-Aβ/β mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage
Critical Role of Macrophages and Their Activation via MyD88-NFΞΊB Signaling in Lung Innate Immunity to Mycoplasma pneumoniae
Mycoplasma pneumoniae (Mp), a common cause of pneumonia, is associated with asthma; however, the mechanisms underlying this association remain unclear. We investigated the cellular immune response to Mp in mice. Intranasal inoculation with Mp elicited infiltration of the lungs with neutrophils, monocytes and macrophages. Systemic depletion of macrophages, but not neutrophils, resulted in impaired clearance of Mp from the lungs. Accumulation and activation of macrophages were decreased in the lungs of MyD88β/β mice and clearance of Mp was impaired, indicating that MyD88 is a key signaling protein in the anti-Mp response. MyD88-dependent signaling was also required for the Mp-induced activation of NFΞΊB, which was essential for macrophages to eliminate the microbe in vitro. Thus, MyD88-NFΞΊB signaling in macrophages is essential for clearance of Mp from the lungs
- β¦