279 research outputs found

    A study on thermal buckling and mode jumping of metallic and composite plates

    Get PDF
    Composite plates in post-buckling regime can experience mode jumping in their buckling shape, suddenly increasing the number of half-waves. This phenomenon can be advantageous, be-cause the shape change could be used for local morphing or structural adaptability in future aerospace structures. A study of this phenomenon under heating is here presented, combining numerical and experimental techniques. At first, a set of parametric analysis was conducted to identify composite panels that present a mode jump when heated. Three plates were selected, one in alumi-num alloy 2024T3, and two in AS4/8552 composite material, with layup [30/−30/5/−5]s and [35/−35/10/−10]s. The plates were tested in a new test setup for thermal buckling based on low thermal expansion fixtures. The mode jumping was successfully obtained experimentally for both composite plates. Numerical simulations predicted the general trends for all plates, and the mode jumps for the composite plates

    Assessment of the Damage Tolerance of Postbuckled Hat-Stiffened Panels Using Single-Stringer Specimens

    Get PDF
    A procedure is proposed for the assessment of the damage tolerance and collapse of stiffened composite panels using a single-stringer compression specimen. The dimensions of the specimen are determined such that the specimen s nonlinear response and collapse are representative of an equivalent multi-stringer panel in compression. Experimental tests are conducted on specimens with and without an embedded delamination. A shell-based finite element model with intralaminar and interlaminar damage capabilities is developed to predict the postbuckling response as well as the damage evolution from initiation to collapse

    Simplified Models for the Study of Postbuckled Hat-Stiffened Composite Panels

    Get PDF
    The postbuckling response and failure of multistringer stiffened panels is analyzed using models with three levels of approximation. The first model uses a relatively coarse mesh to capture the global postbuckling response of a five-stringer panel. The second model can predict the nonlinear response as well as the debonding and crippling failure mechanisms in a single stringer compression specimen (SSCS). The third model consists of a simplified version of the SSCS that is designed to minimize the computational effort. The simplified model is well-suited to perform sensitivity analyses for studying the phenomena that lead to structural collapse. In particular, the simplified model is used to obtain a deeper understanding of the role played by geometric and material modeling parameters such as mesh size, inter-laminar strength, fracture toughness, and fracture mode mixity. Finally, a global/local damage analysis method is proposed in which a detailed local model is used to scan the global model to identify the locations that are most critical for damage tolerance

    Cohesive analysis of a 3D benchmark for delamination growth under quasi-static and fatigue loading conditions

    Get PDF
    This paper evaluates the capabilities of the recently developed CF20 cohesive fatigue model, which can predict crack initiation as well as the rates of crack propagation by relying on intrinsic relationships between a stress-life diagram and its corresponding Paris law. The model is validated here using a partially reinforced double cantilever beam (R-DCB) benchmark proposed in literature. The two parameters needed for the CF20 cohesive fatigue model were obtained by performing preliminary analyses of a conventional DCB. The analysis results indicate that the CF20 cohesive fatigue model can accurately reproduce the complex evolution of the delamination observed in the R-DCB

    Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    Get PDF
    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads

    Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures

    Get PDF
    The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined

    Resistance-welded thermoset composites: A Bayesian approach to process optimisation for improved fracture toughness

    Get PDF
    Joining thermoset composites via resistance welding offers a novel highly efficient assembly method for next-generation aerospace structures. Resistance-welded joints combine the benefits of bonding with the capacity for high-volume manufacturing rates and eliminate the need for complex surface preparation. The influence of key welding parameters on the joint performance is investigated by assessing the Mode I fracture toughness. Double Cantilever Beam specimens with different welding parameter combinations are manufactured, tested and compared with each other. Thermoset laminates are made weldable by co-curing a chemically compatible thermoplastic film with an uncured thermoset laminate. A Bayesian approach is used to study the correlation between processing parameters and to select parameters yielding high performance by training a Gaussian process emulator. Observed Mode I fracture toughness values are comparable to high-performance thermoplastic composites. This is equivalent to an improvement of approximately 290% in Mode I fracture toughness when compared to a co-cured thermoset joint

    The importance of accounting for large deformation in continuum damage models in predicting matrix failure of composites

    Get PDF
    The work presented in this paper investigates the ability of continuum damage models to accurately predict matrix failure and ply splitting. Two continuum damage model approaches are implemented that use different stress–strain measures. The first approach is based on small-strain increments and the Cauchy stress, while the second approach account for large deformation kinematics through the use of the Green–Lagrange strain and the 2nd Piola–Kirchhoff stress. The investigation consists of numerical benchmarks at three different levels: (1) single element; (2) unidirectional single ply open-hole specimen and (3) open-hole composite laminate coupon. Finally, the numerically predicted failure modes are compared to experimental failure modes at the coupon level. It is shown that it is important to account for large deformation kinematics in the constitutive model, especially when predicting matrix splitting failure modes. It is also shown that continuum damage models that do not account for large deformation kinematics can easily be adapted to ensure that the damage modes and failure strength are predicted accurately

    Experimental Evaluation of Fatigue Damage Progression in Postbuckled Single Stringer Composite Specimens

    Get PDF
    The durability and damage tolerance of postbuckled composite structures are not yet completely understood, and remain difficult to predict due to the nonlinearity of the geometric response and its interaction with local damage modes. A research effort was conducted to investigate experimentally the quasi-static and fatigue damage progression in a single-stringer compression (SSC) specimen. Three specimens were manufactured with a hat-stiffener, and an initial defect was introduced with a Teflon film embedded between one flange of the stringer and the skin. One of the specimens was tested under quasi-static compressive loading, while the remaining two specimens were tested by cycling in postbuckling. The tests were performed at the NASA Langley Research Center under controlled conditions and with instrumentation that allows a precise evaluation of the postbuckling response and of the damage modes. Three-dimensional digital image correlation VIC-3D systems were used to provide full field displacements and strains on the skin and the stringer. Passive thermal monitoring was conducted during the fatigue tests using an infrared camera that showed the location of the delamination front while the specimen was being cycled. The live information from the thermography was used to stop the fatigue tests at critical stages of the damage evolution to allow detailed ultrasonic scans
    • …
    corecore