17 research outputs found

    Some Variations on Maxwell's Equations

    Get PDF
    In the first sections of this article, we discuss two variations on Maxwell's equations that have been introduced in earlier work--a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equations), and a linear modification motivated by the coupling of the electromagnetic potential with a certain nonlinear Schroedinger equation. In the final section, revisiting an old idea of Lorentz, we write Maxwell's equations for a theory in which the electrostatic force of repulsion between like charges differs fundamentally in magnitude from the electrostatic force of attraction between unlike charges. We elaborate on Lorentz' description by means of electric and magnetic field strengths, whose governing equations separate into two fully relativistic Maxwell systems--one describing ordinary electromagnetism, and the other describing a universally attractive or repulsive long-range force. If such a force cannot be ruled out {\it a priori} by known physical principles, its magnitude should be determined or bounded experimentally. Were it to exist, interesting possibilities go beyond Lorentz' early conjecture of a relation to (Newtonian) gravity.Comment: 26 pages, submitted to a volume in preparation to honor Gerard Emch v. 2: discussion revised, factors of 4\pi corrected in some equation

    Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics

    Full text link
    We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics...Comment: 51 single column pages, 19 postscript figures, 2 tables, GRG tex style; minor corrections added; final version appearing in General Relativity and Gravitatio

    Scorpion incidents, misidentification cases and possible implications for the final interpretation of results

    Full text link
    corecore