2,591 research outputs found
Cavity QED with Multiple Hyperfine Levels
We calculate the weak-driving transmission of a linearly polarized cavity
mode strongly coupled to the D2 transition of a single Cesium atom. Results are
relevant to future experiments with microtoroid cavities, where the
single-photon Rabi frequency g exceeds the excited-state hyperfine splittings,
and photonic bandgap resonators, where g is greater than both the excited- and
ground-state splitting.Comment: 6 pages, 10 figure
Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies
We report first-principles calculations which demonstrate that vacancies can
combine with hydrogen impurities in bulk aluminum and play a crucial role in
the embrittlement of this prototypical ductile solid. Our studies of
hydrogen-induced vacancy superabundant formation and vacancy clusterization in
aluminum lead to the conclusion that a large number of H atoms (up to twelve)
can be trapped at a single vacancy, which over-compensates the energy cost to
form the defect. In the presence of trapped H atoms, three nearest-neighbor
single vacancies which normally would repel each other, aggregate to form a
trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks
and resulting in ductile rupture along the these planes.Comment: To appear in Phys. Rev. Let
Zener Disaccommodation In Dilute F.C.C. Co-Ti Alloys
The magnetic Dis accommodation, i.e., the time dependence of the low field magnetic permeability, was investigated in cobalt base alloys containing 0-5.1 at.% (0-4.2 wt.%) titanium in the temperature range 400-700°C. A strong temperature dependence of the Dis accommodation observed in the range 430-530°C could be accounted for predominantly by a single first order relaxation process. Analyzing the data in terms of (a) a single exponential relaxation, (b) a lognormal distribution of relaxation times, and (c) a sum of exponential relaxations, it was shown that the relaxation strength varies as the square of the titanium concentration and that the relaxation is characterized by an activation enthalpy of 69 ± 1 kcal/mole and a τ0 of the order of 10-16 sec. The Dis accommodation was attributed to the reorientation of substitutional solute atom (titanium) pairs. From the temperature dependence of the relaxation strength the binding energy of Ti atom pairs was determined to be 0.17 ± 0.08 eV. © 1968
Trapped atoms in cavity QED: coupling quantized light and matter
On the occasion of the hundredth anniversary of Albert Einstein's annus mirabilis, we reflect on the development and current state of research in cavity quantum electrodynamics in the optical domain. Cavity QED is a field which undeniably traces its origins to Einstein's seminal work on the statistical theory of light and the nature of its quantized interaction with matter. In this paper, we emphasize the development of techniques for the confinement of atoms strongly coupled to high-finesse resonators and the experiments which these techniques enable
Cavity QED with Single Atoms and Photons
Recent experimental advances in the field of cavity quantum electrodynamics (QED) have opened new possibilities for control of atom-photon interactions. A laser with "one and the same atom" demonstrates the theory of laser operation pressed to its conceptual limit. The generation of single photons on demand and the realization of cavity QED with well defined atomic numbers N = 0, 1, 2,... both represent important steps toward realizing diverse protocols in quantum information science. Coherent manipulation of the atomic state via Raman transitions provides a new tool in cavity QED for in situ monitoring and control of the atom-cavity system. All of these achievements share a common point of departure: the regime of strong coupling. It is thus interesting to consider briefly the history of the strong coupling criterion in cavity QED and to trace out the path that research has taken in the pursuit of this goal
Observation of the Vacuum-Rabi Spectrum for One Trapped Atom
The transmission spectrum for one atom strongly coupled to the field of a
high-finesse optical resonator is observed to exhibit a clearly resolved
vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue
spectrum of the atom-cavity system. A new Raman scheme for cooling atomic
motion along the cavity axis enables a complete spectrum to be recorded for an
individual atom trapped within the cavity mode, in contrast to all previous
measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure
Interstitial Solute Trapping In Irradiated And Quenched Iron
The interaction of interstitial carbon and nitrogen solutes with defects produced by low temperature neutron irradiation and by quenching was studied in high purity and Ferrovac E iron. Magnetic Dis accommodation techniques were applied to determine the interstitial solute content after irradiation and upon annealing. Doses of about 1017 neutrons/cm2 caused the trapping of about 20 ppm (atomic) interstitial solutes at 65 (carbon) and 40°C (nitrogen). Trapping of carbon in a Ferrovac E iron alloy occurred during a fast quench from 880°C. After trapping, the interstitial solutes reappeared in solid solution at 300 (carbon, neutron irradiation), 200 (nitrogen, neutron irradiation), and 620°C (carbon, quenching). Various possibilities for the defect traps were considered and it was concluded that trapping of the interstitial solutes occurred at iron interstitial clusters after neutron irradiation and at vacancy type defects after quenching. Copyright © 1968 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinhei
Demonstration of long-lived high power optical waveguides in air
We demonstrate that femtosecond filaments can set up an extended and robust
thermal waveguide structure in air with a lifetime of several milliseconds,
making possible the very long range guiding and distant projection of high
energy laser pulses and high average power beams. As a proof of principle, we
demonstrate guiding of 110 mJ, 7 ns, 532 nm pulses with 90% throughput over ~15
Rayleigh lengths in a 70 cm long air waveguide generated by the long timescale
thermal relaxation of an array of femtosecond filaments. The guided pulse was
limited only by our available laser energy. In general, these waveguides should
be robust against the effects of thermal blooming of extremely high average
power laser beams.Comment: 11 pages, 5 figure
Cavity QED with multiple atomic excited states
We consider cavity QED with single-photon Rabi frequency comparable to the hyperfine splitting of the atom’s excited levels. We discuss experimental progress towards relevant measurements
- …