87 research outputs found

    Jetset: selecting the optimal microarray probe set to represent a gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interpretation of gene expression microarrays requires a mapping from probe set to gene. On many Affymetrix gene expression microarrays, a given gene may be detected by multiple probe sets, which may deliver inconsistent or even contradictory measurements. Therefore, obtaining an unambiguous expression estimate of a pre-specified gene can be a nontrivial but essential task.</p> <p>Results</p> <p>We developed scoring methods to assess each probe set for specificity, splice isoform coverage, and robustness against transcript degradation. We used these scores to select a single representative probe set for each gene, thus creating a simple one-to-one mapping between gene and probe set. To test this method, we evaluated concordance between protein measurements and gene expression values, and between sets of genes whose expression is known to be correlated. For both test cases, we identified genes that were nominally detected by multiple probe sets, and we found that the probe set chosen by our method showed stronger concordance.</p> <p>Conclusions</p> <p>This method provides a simple, unambiguous mapping to allow assessment of the expression levels of specific genes of interest.</p

    Computational Analysis Reveals the Temporal Acquisition of Pathway Alterations during the Evolution of Cancer

    Get PDF
    Cancer metastasis is the lethal developmental step in cancer, responsible for the majority of cancer deaths. To metastasise, cancer cells must acquire the ability to disseminate systemically and to escape an activated immune response. Here, we endeavoured to investigate if metastatic dissemination reflects acquisition of genomic traits that are selected for. We acquired mutation and copy number data from 8332 tumours representing 19 cancer types acquired from The Cancer Genome Atlas and the Hartwig Medical Foundation. A total of 827,344 non-synonymous mutations across 8332 tumour samples representing 19 cancer types were timed as early or late relative to copy number alterations, and potential driver events were annotated. We found that metastatic cancers had a significantly higher proportion of clonal mutations and a general enrichment of early mutations in p53 and RTK/KRAS pathways. However, while individual pathways demonstrated a clear time-separated preference for specific events, the relative timing did not vary between primary and metastatic cancers. These results indicate that the selective pressure that drives cancer development does not change dramatically between primary and metastatic cancer on a genomic level, and is mainly focused on alterations that increase proliferation

    A breast cancer meta-analysis of two expression measures of chromosomal instability reveals a relationship with younger age at diagnosis and high risk histopathological variables

    Get PDF
    Breast cancer in younger patients often presents with adverse histopathological features, including increased frequency of estrogen receptor negative and lymph node positive disease status. Chromosomal instability (CIN) is increasingly recognised as an important prognostic variable in solid tumours. In a breast cancer meta-analysis of 2423 patients we examine the relationship between clinicopathological parameters and two distinct chromosomal instability gene expression signatures in order to address whether younger age at diagnosis is associated with increased tumour genome instability. We find that CIN, assessed by the two independently derived CIN expression signatures, is significantly associated with increased tumour size, ER negative or HER2 positive disease, higher tumour grade and younger age at diagnosis in ER negative breast cancer. These data support the hypothesis that chromosomal instability may be a defining feature of breast cancer biology and clinical outcome

    Classifying cGAS-STING Activity Links Chromosomal Instability with Immunotherapy Response in Metastatic Bladder Cancer

    Get PDF
    UNLABELLED: The cGAS-STING pathway serves a critical role in anticancer therapy. Particularly, response to immunotherapy is likely driven by both active cGAS-STING signaling that attracts immune cells, and by the presence of cancer neoantigens that presents as targets for cytotoxic T cells. Chromosomal instability (CIN) is a hallmark of cancer, but also leads to an accumulation of cytosolic DNA that in turn results in increased cGAS-STING signaling. To avoid triggering the cGAS-STING pathway, it is commonly disrupted by cancer cells, either through mutations in the pathway or through transcriptional silencing. Given its effect on the immune system, determining the cGAS-STING activation status prior to treatment initiation is likely of clinical relevance. Here, we used combined expression data from 2,307 tumors from five cancer types from The Cancer Genome Atlas to define a novel cGAS-STING activity score based on eight genes with a known role in the pathway. Using unsupervised clustering, four distinct categories of cGAS-STING activation were identified. In multivariate models, the cGAS-STING active tumors show improved prognosis. Importantly, in an independent bladder cancer immunotherapy-treated cohort, patients with low cGAS-STING expression showed limited response to treatment, while patients with high expression showed improved response and prognosis, particularly among patients with high CIN and more neoantigens. In a multivariate model, a significant interaction was observed between CIN, neoantigens, and cGAS-STING activation. Together, this suggests a potential role of cGAS-STING activity as a predictive biomarker for the application of immunotherapy. SIGNIFICANCE: The cGAS-STING pathway is induced by CIN, triggers inflammation and is often deficient in cancer. We provide a tool to evaluate cGAS-STING activity and demonstrate clinical significance in immunotherapy response

    Quantification of within-sample genetic heterogeneity from SNP-array data

    Get PDF
    Intra-tumour genetic heterogeneity (ITH) fosters drug resistance and is a critical hurdle to clinical treatment. ITH can be well-measured using multi-region sampling but this is costly and challenging to implement. There is therefore a need for tools to estimate ITH in individual samples, using standard genomic data such as SNP-arrays, that could be implemented routinely. We designed two novel scores S and R, respectively based on the Shannon diversity index and Ripley’s L statistic of spatial homogeneity, to quantify ITH in single SNP-array samples. We created in-silico and in-vitro mixtures of tumour clones, in which diversity was known for benchmarking purposes. We found significant but highly-variable associations of our scores with diversity in-silico (p < 0.001) and moderate associations in–vitro (p = 0.015 and p = 0.085). Our scores were also correlated to previous ITH estimates from sequencing data but heterogeneity in the fraction of tumour cells present across samples hampered accurate quantification. The prognostic potential of both scores was moderate but significantly predictive of survival in several tumour types (corrected p = 0.03). Our work thus shows how individual SNP-arrays reveal intra-sample clonal diversity with moderate accuracy

    Consistent metagenes from cancer expression profiles yield agent specific predictors of chemotherapy response

    Get PDF
    Genome scale expression profiling of human tumor samples is likely to yield improved cancer treatment decisions. However, identification of clinically predictive or prognostic classifiers can be challenging when a large number of genes are measured in a small number of tumors.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Tumor Mutation Burden Forecasts Outcome in Ovarian Cancer with BRCA1 or BRCA2 Mutations

    Get PDF
    Background: Increased number of single nucleotide substitutions is seen in breast and ovarian cancer genomes carrying disease-associated mutations in BRCA1 or BRCA2. The significance of these genome-wide mutations is unknown. We hypothesize genome-wide mutation burden mirrors deficiencies in DNA repair and is associated with treatment outcome in ovarian cancer. Methods and Results: The total number of synonymous and non-synonymous exome mutations (Nmut), and the presence of germline or somatic mutation in BRCA1 or BRCA2 (mBRCA) were extracted from whole-exome sequences of high-grade serous ovarian cancers from The Cancer Genome Atlas (TCGA). Cox regression and Kaplan-Meier methods were used to correlate Nmut with chemotherapy response and outcome. Higher Nmut correlated with a better response to chemotherapy after surgery. In patients with mBRCA-associated cancer, low Nmut was associated with shorter progression-free survival (PFS) and overall survival (OS), independent of other prognostic factors in multivariate analysis. Patients with mBRCA-associated cancers and a high Nmut had remarkably favorable PFS and OS. The association with survival was similar in cancers with either BRCA1 or BRCA2 mutations. In cancers with wild-type BRCA, tumor Nmut was associated with treatment response in patients with no residual disease after surgery. Conclusions: Tumor Nmut was associated with treatment response and with both PFS and OS in patients with high-grade serous ovarian cancer carrying BRCA1 or BRCA2 mutations. In the TCGA cohort, low Nmut predicted resistance to chemotherapy, and for shorter PFS and OS, while high Nmut forecasts a remarkably favorable outcome in mBRCA-associated ovarian cancer. Our observations suggest that the total mutation burden coupled with BRCA1 or BRCA2 mutations in ovarian cancer is a genomic marker of prognosis and predictor of treatment response. This marker may reflect the degree of deficiency in BRCA-mediated pathways, or the extent of compensation for the deficiency by alternative mechanisms

    STAT3 Induction of miR-146b Forms a Feedback Loop to Inhibit the NF-kB to IL-6 Signaling Axis and STAT3-Driven Cancer Phenotypes

    Get PDF
    Interleukin-6 (IL-6)–mediated activation of signal transducer and activator of transcription 3 (STAT3) is a mechanism by which chronic inflammation can contribute to cancer and is a common oncogenic event. We discovered a pathway, the loss of which is associated with persistent STAT3 activation in human cancer. We found that the gene encoding the tumor suppressor microRNA miR-146b is a direct STAT3 target gene, and its expression was increased in normal breast epithelial cells but decreased in tumor cells. Methylation of the miR-146b promoter, which inhibited STAT3-mediated induction of expression, was increased in primary breast cancers. Moreover, we found that miR-146b inhibited nuclear factor kB (NF-kB)–dependent production of IL-6, subsequent STAT3 activation, and IL-6/STAT3–driven migration and invasion in breast cancer cells, thereby establishing a negative feedback loop. In addition, higher expression of miR-146b was positively correlated with patient survival in breast cancer subtypes with increased IL6 expression and STAT3 phosphorylation. Our results identify an epigenetic mechanism of crosstalk between STAT3 and NF-kB relevant to constitutive STAT3 activation in malignancy and the role of inflammation in oncogenesis

    Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs

    Get PDF
    Background: Ovarian and triple-negative breast cancers with BRCA1 or BRCA2 loss are highly sensitive to treatment with PARP inhibitors and platinum-based cytotoxic agents and show an accumulation of genomic scars in the form of gross DNA copy number aberrations. Cancers without BRCA1 or BRCA2 loss but with accumulation of similar genomic scars also show increased sensitivity to platinum-based chemotherapy. Therefore, reliable biomarkers to identify DNA repair-deficient cancers prior to treatment may be useful for directing patients to platinum chemotherapy and possibly PARP inhibitors. Recently, three SNP array-based signatures of chromosomal instability were published that each quantitate a distinct type of genomic scar considered likely to be caused by improper DNA repair. They measure telomeric allelic imbalance (named NtAI), large scale transition (named LST), and loss of heterozygosity (named HRD-LOH), and it is suggested that these signatures may act as biomarkers for the state of DNA repair deficiency in a given cancer. Results: We explored the pan-cancer distribution of scores of the three signatures utilizing a panel of 5371 tumors representing 15 cancer types from The Cancer Genome Atlas, and found a good correlation between scores of the three signatures (Spearman’s ρ 0.73–0.87). In addition we found that cancer types ordinarily receiving platinum as standard of care have higher median scores of all three signatures. Interestingly, we also found that smaller subpopulations of high-scoring tumors exist in most cancer types, including those for which platinum chemotherapy is not standard therapy. Conclusions: Within several cancer types that are not ordinarily treated with platinum chemotherapy, we identified tumors with high levels of the three genomic biomarkers. These tumors represent identifiable subtypes of patients which may be strong candidates for clinical trials with PARP inhibitors or platinum-based chemotherapeutic regimens. Electronic supplementary material The online version of this article (doi:10.1186/s40364-015-0033-4) contains supplementary material, which is available to authorized users
    • …
    corecore