325 research outputs found

    Increasing System Test Coverage in Production Automation Systems

    Full text link
    An approach is introduced, which supports a testing technician in the identification of possibly untested behavior of control software of fully integrated automated production systems (aPS). Based on an approach for guided semi-automatic system testing, execution traces are recorded during testing, allowing a subsequent coverage assessment. As the behavior of an aPS is highly dependent on the software, omitted system behavior can be identified and assessed for criticality. Through close cooperation with industry, this approach represents the first coverage assessment approach for system testing in production automation to be applied on real industrial objects and evaluated by industrial experts

    Towards a Formal Specification Framework for Manufacturing Execution Systems

    Full text link
    Manufacturing Execution Systems (MES) optimize production and business processes at the same time. However, the engineering and specification of MES is a challenging, interdisciplinary process. Especially IT and production experts with different views and background have to cooperate. For successful and efficient MES software projects, misunderstandings in the specification process have to be avoided. Therefore, textual specifications need to be complemented by unambiguous graphical models, reducing the complexity by integrating interdisciplinary views and domain specific terms based on different background knowledge. Today's modeling notations focus on the detailed modeling of a certain domain specific problem area. They do not support interdisciplinary discussion adequately. To bridge this gap a novel MES Modeling Language (MES-ML) integrating all necessary views important for MES and pointing out their interdependencies has been developed. Due to its formal basis, comparable and consistent MES-models can be created for specification, standardization, testing, and documentation of MES software. In this paper, the authors present the formal basis of the modeling language and its core notation. The application of MES-ML is demonstrated taking a yogurt production as an example. Finally, the authors give some evaluation results that underline the effectiveness and efficiency of this new modeling approach with reference to four applications in industrial MES-projects in the domain of discrete and hybrid manufacturing.Comment: 10 pages, https://ieeexplore.ieee.org/abstract/document/614565

    Industrially Applicable System Regression Test Prioritization in Production Automation

    Full text link
    When changes are performed on an automated production system (aPS), new faults can be accidentally introduced in the system, which are called regressions. A common method for finding these faults is regression testing. In most cases, this regression testing process is performed under high time pressure and on-site in a very uncomfortable environment. Until now, there is no automated support for finding and prioritizing system test cases regarding the fully integrated aPS that are suitable for finding regressions. Thus, the testing technician has to rely on personal intuition and experience, possibly choosing an inappropriate order of test cases, finding regressions at a very late stage of the test run. Using a suitable prioritization, this iterative process of finding and fixing regressions can be streamlined and a lot of time can be saved by executing test cases likely to identify new regressions earlier. Thus, an approach is presented in this paper that uses previously acquired runtime data from past test executions and performs a change identification and impact analysis to prioritize test cases that have a high probability to unveil regressions caused by side effects of a system change. The approach was developed in cooperation with reputable industrial partners active in the field of aPS engineering, ensuring a development in line with industrial requirements. An industrial case study and an expert evaluation were performed, showing promising results.Comment: 13 pages, https://ieeexplore.ieee.org/abstract/document/8320514

    Maintainability and evolvability of control software in machine and plant manufacturing -- An industrial survey

    Full text link
    Automated Production Systems (aPS) have lifetimes of up to 30-50 years, throughout which the desired products change ever more frequently. This requires flexible, reusable control software that can be easily maintained and evolved. To evaluate selected criteria that are especially relevant for maturity in software maintainability and evolvability of aPS, the approach SWMAT4aPS+ builds on a questionnaire with 52 questions. The three main research questions cover updates of software modules and success factors for both cross-disciplinary development as well as reusable models. This paper presents the evaluation results of 68 companies from machine and plant manufacturing (MPM). Companies providing automation devices and/or engineering tools will be able to identify challenges their customers in MPM face. Validity is ensured through feedback of the participating companies and an analysis of the statistical unambiguousness of the results. From a software or systems engineering point of view, almost all criteria are fulfilled below expectations

    TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE

    Get PDF
    The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC) under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process

    Agents enabling cyber-physical production systems

    Get PDF
    In order to be prepared for future challenges facing the industrial production domain, Cyber-Physical Production Systems (CPPS) consisting of intelligent entities which collaborate and exchange information globally are being proclaimed recently as part of Industrie 4.0. In this article the requirements of CPPS and abilities of agents as enabling technology are discussed. The applicability of agents for realizing CPPS is exemplarily shown based on three selected use cases with different requirements regarding real-time and dependability. The paper finally concludes with opportunities and open research issues that need to be faced in order to achieve agent-based CPPSs.info:eu-repo/semantics/publishedVersio

    Improving transferability between different engineering stages in the development of automated material flow modules

    Full text link
    For improving flexibility and robustness of the engineering of automated production systems (aPS) in case of extending, reducing or modifying parts, several approaches propose an encapsulation and clustering of related functions, e.g. from the electrical, mechanical or software engineering, based on a modular architecture. Considering the development of these modules, there are different stages, e.g. module planning or functional engineering, which have to be completed. A reference model that addresses the different stages for the engineering of aPS is proposed by AutomationML. Due to these different stages and the integration of several engineering disciplines, e.g. mechanical, electrical/electronic or software engineering, information not limited to one discipline are stored redundantly increasing the effort to transfer information and the risk of inconsistency. Although, data formats for the storage and exchange of plant engineering information exist, e.g. AutomationML, fixed domain specific structures and relations of the information, e.g. for automated material flow systems (aMFS), are missing. This paper presents the integration of a meta model into the development of modules for aMFS to improve the transferability and consistency of information between the different engineering stages and the increasing level of detail from the coarse-grained plant planning to the fine-grained functional engineering.Comment: 11 pages, https://ieeexplore.ieee.org/abstract/document/7499821

    Facial expressions and personality: A kinematical investigation during an emotion induction experiment

    Get PDF
    Background/Aims: In order to elucidate the relationship between personality traits and expression of positive emotions in healthy volunteers, standardized personality inventories and kinematical analysis of facial expressions can be helpful and were applied in the present study. Methods: Markers fixed at distinct points of the face emitting ultrasonic signals at high frequency gave a direct measure of facial movements with high spatial-temporal resolution. Forty-six healthy participants (mean age: 40.7 years; 20 males, 26 females) watching a witty movie ('Mr. Bean') were investigated. Results: Speed of `laughing' was associated with higher scores on Zuckerman's Sensation Seeking Scale and NEO-FFI (Openness to Experience). Conclusion: Kinematical analysis of facial expressions seems to reflect sensation seeking and related personality styles. Higher speed of facial movements in sensation seekers suggests lowered serotonergic function. Copyright (c) 2006 S. Karger AG, Basel

    Summer school on intelligent agents in automation: Experience and reflections from the second edition

    Get PDF
    Several research agendas worldwide are targeting the development of Industrial Cyber-physical Systems as the next generation of intelligent embedded devices with improved interaction capabilities. These devices, and their potential uses, are though to deliver a radical increase in system sustainability, reconfigurability and flexibility which is perceived to be the root of the so called 4 th Industrial Revolution. However such technical systems, at the envisioned revolutionary scale, do not exist just yet and require a convergent and multidisciplinary research and development efforts. The academia curricula are also, albeit slowly, adjusting to the emerging education requirements. The Summer School on Intelligent Agents in Automation is a joint effort from several researchers in core areas of the 4 th Industrial Revolution landscape to close the gap and promote advanced education in this context. This paper describes the implementation of the 2 nd edition of the event as well as the experience and reflections resultant from it.info:eu-repo/semantics/publishedVersio

    Summer school on intelligent agents in automation: Hands-on educational experience on deploying industrial agents

    Get PDF
    Cyber-physical systems constitutes a framework to develop intelligent, distributed, resilient, collaborative and cooperative systems, promoting the fusion of computational entities and physical devices. Agent technology plays a crucial role to develop this kind of systems by offering a decentralized, distributed, modular, robust and reconfigurable control structure. This paper describes the implementation of a summer school aiming to enhance the participants' knowledge in the field of multi-agent systems applied to industrial environments, being able to gain the necessary theoretical and practical skills to develop real industrial agent based applications. This is accomplished in an international framework where individual knowledge and experiences are shared in a complementary level.info:eu-repo/semantics/publishedVersio
    • …
    corecore