109 research outputs found
Guaranteed clustering and biclustering via semidefinite programming
Identifying clusters of similar objects in data plays a significant role in a
wide range of applications. As a model problem for clustering, we consider the
densest k-disjoint-clique problem, whose goal is to identify the collection of
k disjoint cliques of a given weighted complete graph maximizing the sum of the
densities of the complete subgraphs induced by these cliques. In this paper, we
establish conditions ensuring exact recovery of the densest k cliques of a
given graph from the optimal solution of a particular semidefinite program. In
particular, the semidefinite relaxation is exact for input graphs corresponding
to data consisting of k large, distinct clusters and a smaller number of
outliers. This approach also yields a semidefinite relaxation for the
biclustering problem with similar recovery guarantees. Given a set of objects
and a set of features exhibited by these objects, biclustering seeks to
simultaneously group the objects and features according to their expression
levels. This problem may be posed as partitioning the nodes of a weighted
bipartite complete graph such that the sum of the densities of the resulting
bipartite complete subgraphs is maximized. As in our analysis of the densest
k-disjoint-clique problem, we show that the correct partition of the objects
and features can be recovered from the optimal solution of a semidefinite
program in the case that the given data consists of several disjoint sets of
objects exhibiting similar features. Empirical evidence from numerical
experiments supporting these theoretical guarantees is also provided
Riemannian Sparse Coding for Positive Definite Matrices
International audienceInspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extended. Prior works have approached this problem by defining a sparse coding loss function using either extrinsic similarity measures (such as the log-Euclidean distance) or kernelized variants of statistical measures (such as the Stein divergence, Jeffrey's divergence, etc.). In contrast, we propose to use the intrinsic Riemannian distance on the manifold of SPD matrices. Our main contribution is a novel mathematical model for sparse coding of SPD matrices; we also present a computationally simple algorithm for optimizing our model. Experiments on several computer vision datasets showcase superior classification and retrieval performance compared with state-of-the-art approaches
Nonmonotone Barzilai-Borwein Gradient Algorithm for -Regularized Nonsmooth Minimization in Compressive Sensing
This paper is devoted to minimizing the sum of a smooth function and a
nonsmooth -regularized term. This problem as a special cases includes
the -regularized convex minimization problem in signal processing,
compressive sensing, machine learning, data mining, etc. However, the
non-differentiability of the -norm causes more challenging especially
in large problems encountered in many practical applications. This paper
proposes, analyzes, and tests a Barzilai-Borwein gradient algorithm. At each
iteration, the generated search direction enjoys descent property and can be
easily derived by minimizing a local approximal quadratic model and
simultaneously taking the favorable structure of the -norm. Moreover, a
nonmonotone line search technique is incorporated to find a suitable stepsize
along this direction. The algorithm is easily performed, where the values of
the objective function and the gradient of the smooth term are required at
per-iteration. Under some conditions, the proposed algorithm is shown to be
globally convergent. The limited experiments by using some nonconvex
unconstrained problems from CUTEr library with additive -regularization
illustrate that the proposed algorithm performs quite well. Extensive
experiments for -regularized least squares problems in compressive
sensing verify that our algorithm compares favorably with several
state-of-the-art algorithms which are specifically designed in recent years.Comment: 20 page
Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbances
¿Género en la reforma o reforma sin género?: desprotección social en las leyes previsionales de América Latina
Incluye BibliografíaResumen El presente documento analiza, con un enfoque de género, las reformas previsionales implementadas en ocho países de América Latina, las que implicaron la sustitución de los sistemas públicos por sistemas de ahorro capitalizado individualmente y reemplazaron totalmente el sistema anterior o bien son complementarias con otros esquemas públicos de reparto. En este marco se examinan datos sobre el comportamiento del mercado de trabajo y del propio sistema previsional que permitieron ampliar el análisis y detectar el impacto diferenciado que ejercen las leyes de previsión social sobre mujeres y hombres. Otro de los objetivos fue aportar algunos elementos que hicieran posible acotar el debate sobre los efectos diferenciales de estas reformas en la calidad de vida de las mujeres adultas mayores
- …