85 research outputs found
Can Carbon Sinks be Operational? An RFF Workshop Summary
An RFF Workshop brought together experts from around the world to assess the feasibility of using biological sinks to sequester carbon as part of a global atmospheric mitigation effort. The chapters of this proceeding are a result of that effort. Although the intent of the workshop was not to generate a consensus, a number of studies suggest that sinks could be a relatively inexpensive and effective carbon management tool. The chapters cover a variety of aspects and topics related to the monitoring and measurement of carbon in biological systems. They tend to support the view the carbon sequestration using biological systems is technically feasible with relatively good precision and at relatively low cost. Thus carbon sinks can be operational.carbon, sinks, global warming, sequestration, forests
Recommended from our members
Trends in North American net primary productivity derived from satellite observations, 1982-1998
Net primary productivity (NPP) in North America was computed for the years 1982â1998 using the CarnegieâAmesâStanford approach (CASA) carbon cycle model. CASA was driven by a new, corrected satellite record of the normalized difference vegetation index at 8âkm spatial resolution. Regional trends in the 17âyear NPP record varied substantially across the continent. Croplands and grasslands of the Central Plains and eastern Canadian forests experienced summer increases in NPP. Peak NPP trends in Alaska and western Canada occurred in late spring or early summer, suggesting an earlier onset of the growing season in these regions. Forests and woodlands of the southeastern United States showed NPP increases in spring and fall, also suggesting an increase in the length of the growing season. An analysis of climate variables showed that summer precipitation increased in the Central Plains, indicating that climate changes probably play some role in increasing NPP in this region, though intensive management of agricultural ecosystems has also increased productivity. Similarly, increased summer precipitation possibly increased NPP in eastern Canada, but another possible explanation is forest recovery after insect damage. NPP in the southeastern United States increased in the absence of climate variation. Much of this region consists of aggressively managed forests, with young stand ages and intensive silviculture resulting in increased NPP. The high latitudes of western Canada and Alaska experienced spring warming that could have increased NPP in late spring or early summer
Recommended from our members
Satellite-derived increases in net primary productivity across North America, 1982-1998
We used a new 17âyear, high spatial resolution satellite record and a carbon cycle model to explore how changing net primary productivity (NPP) contributed to a proposed carbon (C) sink in North America. We found a small but significant increase in NPP, 0.03 Pg C yr^(â2) or 8% over 17 years, that could explain a substantial fraction of the C sink. The largest increases occurred in the central and southeastern United States, eastern Canada, and northwestern North America, and were consistent with NPP trends derived from forest inventories and crop yields. Interannual NPP variability was small, implying that the large interannual variability in the C sink found in previous studies were driven by changes in heterotrophic respiration
Investigators share improved understanding of the North American Carbon Cycle
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94828/1/eost16014.pd
Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system
Forest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon monitoring system, but integration of the two observation systems is not without challenges. To explore integration methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county levels in Anne Arundel and Howard Counties in Maryland. Allometric model-related errors were also considered. In areas of medium to dense biomass, the FIA data were valuable for evaluating map accuracy by comparing plot biomass to pixel values. However, at plots that were defined as ânonforestâ, FIA plots had limited value because tree data was not collected even though trees may be present. When the FIA data were combined with a previous inventory that included sampling of nonforest plots, 21 to 27% of the total biomass of all trees was accounted for in nonforest conditions, resulting in a more accurate benchmark for comparing to total biomass derived from the LIDAR maps. Allometric model error was relatively small, but there was as much as 31% difference in mean biomass based on local diameter-based equations compared to regional volume-based equations, suggesting that the choice of allometric model is important. To be successfully integrated with LIDAR, FIA sampling would need to be enhanced to include measurements of all trees in a landscape, not just those on land defined as âforestâ. Improved GPS accuracy of plot locations, intensifying data collection in small areas with few FIA plots, and other enhancements are also recommended.https://doi.org/10.1186/1750-0680-9-
Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink
The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link between changes in temperature and precipitation and terrestrial processes remains uncertain. Here, we combine atmospheric mass balance, remote sensing-modeled datasets of vegetation C uptake, and climate datasets to characterize the temporal variability of the terrestrial C sink and determine the dominant climate drivers of this variability. We show that the interannual variability of global land C sink has grown by 50â100% over the past 50 y. We further find that interannual land C sink variability is most strongly linked to tropical nighttime warming, likely through respiration. This apparent sensitivity of respiration to nighttime temperatures, which are projected to increase faster than global average temperatures, suggests that C stored in tropical forests may be vulnerable to future warming
Assessing carbon stocks and accumulation potential of mature forests and larger trees in U.S. federal lands
Mature and old-growth forests (collectively âmatureâ) and larger trees are important carbon sinks that are declining worldwide. Information on the carbon value of mature forests and larger trees in the United States has policy relevance for complying with President Joe Bidenâs Executive Order 14072 directing federal agencies to define and conduct an inventory of them for conservation purposes. Specific metrics related to maturity can help land managers define and maintain present and future carbon stocks at the tree and forest stand level, while making an important contribution to the nationâs goal of net-zero greenhouse gas emissions by 2050. We present a systematic method to define and assess the status of mature forests and larger trees on federal lands in the United States that if protected from logging could maintain substantial carbon stocks and accumulation potential, along with myriad climate and ecological co-benefits. We based the onset of forest maturity on the age at which a forest stand achieves peak net primary productivity. We based our definition of larger trees on the median tree diameter associated with the tree age that defines the beginning of stand maturity to provide a practical way for managers to identify larger trees that could be protected in different forest ecosystems. The average age of peak net primary productivity ranged from 35 to 75 years, with some specific forest types extending this range. Typical diameter thresholds that separate smaller from larger trees ranged from 4 to 18 inches (10â46 cm) among individual forest types, with larger diameter thresholds found in the Western forests. In assessing these maturity metrics, we found that the unprotected carbon stock in larger trees in mature stands ranged from 36 to 68% of the total carbon in all trees in a representative selection of 11 National Forests. The unprotected annual carbon accumulation in live above-ground biomass of larger trees in mature stands ranged from 12 to 60% of the total accumulation in all trees. The potential impact of avoiding emissions from harvesting large trees in mature forests is thus significant and would require a policy shift to include protection of carbon stocks and future carbon accumulation as an additional land management objective on federal forest lands
Endothelial Cell Processing and Alternatively Spliced Transcripts of Factor VIII: Potential Implications for Coagulation Cascades and Pulmonary Hypertension
Background: Coagulation factor VIII (FVIII) deficiency leads to haemophilia A. Conversely, elevated plasma levels are a strong predictor of recurrent venous thromboemboli and pulmonary hypertension phenotypes in which in situ thromboses are implicated. Extrahepatic sources of plasma FVIII are implicated, but have remained elusive. Methodology/Principal Findings: Immunohistochemistry of normal human lung tissue, and confocal microscopy, flow cytometry, and ELISA quantification of conditioned media from normal primary endothelial cells were used to examine endothelial expression of FVIII and coexpression with von Willebrand Factor (vWF), which protects secreted FVIII heavy chain from rapid proteloysis. FVIII transcripts predicted from database mining were identified by rt-PCR and sequencing. FVIII mAb-reactive material was demonstrated in CD31+ endothelial cells in normal human lung tissue, and in primary pulmonary artery, pulmonary microvascular, and dermal microvascular endothelial cells. In pulmonary endothelial cells, this protein occasionally colocalized with vWF, centered on Weibel Palade bodies. Pulmonary artery and pulmonary microvascular endothelial cells secreted low levels of FVIII and vWF to conditioned media, and demonstrated cell surface expression of FVIII and vWF Abâreacting proteins compared to an isotype control. Four endothelial splice isoforms were identified. Two utilize transcription start sites in alternate 59 exons within the int22h-1 repeat responsible for intron 2
Satellite - derived increases in net primary productivity across North America, 1982â1998
We used a new 17-year, high spatial resolution satellite record and a carbon cycle model to explore how changing net primary productivity (NPP) contributed to a proposed carbon (C) sink in North America. We found a small but significant increase in NPP, 0.03 Pg C yr-2 or 8% over 17 years, that could explain a substantial fraction of the C sink. The largest increases occurred in the central and southeastern United States, eastern Canada, and northwestern North America, and were consistent with NPP trends derived from forest inventories and crop yields. Interannual NPP variability was small, implying that the large interannual variability in the C sink found in previous studies were driven by changes in heterotrophic respiration
Trends in North American net primary productivity derived from satellite observations, 1982-1998
Net primary productivity (NPP) in North America was computed for the years 1982â1998 using the CarnegieâAmesâStanford approach (CASA) carbon cycle model. CASA was driven by a new, corrected satellite record of the normalized difference vegetation index at 8âkm spatial resolution. Regional trends in the 17âyear NPP record varied substantially across the continent. Croplands and grasslands of the Central Plains and eastern Canadian forests experienced summer increases in NPP. Peak NPP trends in Alaska and western Canada occurred in late spring or early summer, suggesting an earlier onset of the growing season in these regions. Forests and woodlands of the southeastern United States showed NPP increases in spring and fall, also suggesting an increase in the length of the growing season. An analysis of climate variables showed that summer precipitation increased in the Central Plains, indicating that climate changes probably play some role in increasing NPP in this region, though intensive management of agricultural ecosystems has also increased productivity. Similarly, increased summer precipitation possibly increased NPP in eastern Canada, but another possible explanation is forest recovery after insect damage. NPP in the southeastern United States increased in the absence of climate variation. Much of this region consists of aggressively managed forests, with young stand ages and intensive silviculture resulting in increased NPP. The high latitudes of western Canada and Alaska experienced spring warming that could have increased NPP in late spring or early summer
- âŠ