16 research outputs found

    3D Soil Images Structure Quantification using Relative Entropy

    Get PDF
    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice?Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index

    Pedotransfer functions to predict water retention for soils of the humid tropics: a review

    Full text link

    The water retention function for a model of soil structure with pore and solid fractal distributions

    No full text
    Nous présentons une extension de l'approche fractale qui consiste à modéliser la courbe de rétention d'eau des sols en se basant sur un modèle récent de structure des sols, le Pore-Solid Fractal. Ce modèle de structure, dans sa forme la plus générale, met en oeuvre une vision symétrique des phases solide et vide qui contraste avec l'asymétrie des modèles fractals de masses. Il en résulte que l'expresson générale modèlisant la courbe de rétention d'eau dans un Pore-Solid Fractal fait apparaître un paramètre de structure, sous forme d'un exposant d'une loi de puissance, paramètre lié-non-seulement à la distribution de taille des pores, mais aussi à la distribution de taille des solides. Le modèle fournit donc un cadre théorique pour la prédiction de la courbe de rétention d'eau à partir de la mesure de la distribution de particules solides. Trois cas particuliers sont considérés. Deux se réduisent aux expressions connues dans le cas de fractals de masses. Le troisième permet de retrouver les expressions en loi de puissance établies empiriquement. Deux exemples d'application sont traités afin de tester les possibilités de la nouvelle approche en ce qui concerne la prédiction d'une courbe de rétention d'eau à partir de la granulométrie des solides. Le modèle en loi de puissance de la distribution de taille des particules est ajusté aux données. Bien que la qualité des ajustements effectués reste discutable, une dimension fractale en est déduite, puis utilisée pour prévoir la courbe de rétention d'eau. Les résultats sont encourageants et montrent la necessité de poursuivre les recherches théoriques et experimentales à la lumière de la nouvelle théorie présentée. (Résumé d'auteur

    Fractal analysis of pore roughness in images of soil using the slit island method

    No full text
    A description and quantification of the surface of soil pores is important to promote our understanding of soil function because these surfaces provide sites for biological, chemical, and physical processes within the soil. Previous attempts to characterize the geometry of pore surfaces have included the slit island method, which is used to extract a fractal dimension to describe the roughness of the pore perimeters in two dimensions. Our objective in this study was to assess how this approach might be robustly applied to images of soil pore structure. Critical to the success of the technique is constancy of shape in the set of pores analyzed. We applied additional analysis to test whether this criterion is met, using the convex cover and the convexity of a two-dimensional object. This additional analysis coupled with the slit island method was applied to a soil image. In this instance, we were unable to detect a set of pores of common shape and concluded that the fractal dimension of value 1.4 derived from the image reflects not a fractal pore perimeter but rather an increasing complexity of pore shape with increasing pore size. We concluded that the analysis of pore shape proposed here, in addition to scaling of pore perimeter, is critical to sensibly describe the geometry of soil pore perimeters. © Soil Science Society of America. All rights reserved
    corecore