6 research outputs found

    The effect of glucocorticoids on tendon cell viability in human tendon explants

    Get PDF
    Background and purpose Previous studies on the culture of human tenocytes have shown that dexamethasone and triamcino-lone reduce cell viability, suppress cell proliferation, and reduce collagen synthesis. However, such cell cultures lack the extracellular matrix and three-dimensional structure of normal tendons, which affects their response to stimuli. We established a human tendon explant culture system and tested the effects of dexamethasone and triamcinolone on cell viability

    Recapitulation of Werner syndrome sensitivity to camptothecin by limited knockdown of the WRN helicase/exonuclease

    No full text
    WRN is a RecQ helicase with an associated exonuclease activity important in DNA metabolism, including DNA replication, repair and recombination. In humans, deficiencies in WRN function cause the segmental progeroid Werner syndrome (WS), in which patients show premature onset of many hallmarks of normal human ageing. At the cellular level, WRN loss results in rapid replicative senescence, chromosomal instability and sensitivity to various DNA damaging agents including the topoisomerase inhibitor, camptothecin (CPT). Here, we investigate the potential of using either transient or stable WRN knockdown as a means of sensitising cells to CPT. We show that targeting WRN mRNA for degradation by either RNAi or hammerhead ribozyme catalysis renders human fibroblasts as sensitive to CPT as fibroblasts derived from WS patients, and furthermore, we find altered cell cycle transit and nucleolar destabilisation in these cells following CPT treatment. Such WS-like phenotypes are observed despite very limited decreases in total WRN protein, suggesting that levels of WRN protein are rate-limiting for the cellular response to camptothecin. These findings have major implications for development of anti-WRN agents that may be useful in sensitising tumour cells to clinically relevant topoisomerase inhibitors. © 2011 Springer Science+Business Media B.V

    The response of bone, articular cartilage and tendon to exercise in the horse

    No full text
    Horses can gallop within hours of birth, and may begin training for athletic competition while still growing. This review cites studies on the effects of exercise on bone, tendon and articular cartilage, as detected by clinical and research imaging techniques, tissue biochemical analysis and microscopy of various kinds. For bone, alterations in bone mineral content, mineral density and the morphology of the mineralized tissue are the most common end-points. Apparent bone density increases slightly after athletic training in the cortex, but substantially in the major load paths of the epiphyses and cuboidal bones, despite the lower material density of the new bone, which is deposited subperiosteally and on internal surfaces without prior osteoclastic resorption. With training of greater intensity, adaptive change is supervened by patho-anatomical change in the form of microdamage and frank lesions. In tendon, collagen fibril diameter distribution changes significantly during growth, but not after early training. The exact amount and type of protracted training that does cause reduction in mass average diameter (an early sign of progressive microdamage) have not been defined. Training is associated with an increase in the cross-sectional area of some tendons, possibly owing to slightly greater water content of non-collagenous or newly synthesized matrix. Early training may be associated with greater thickness of hyaline but not calcified articular cartilage, at least in some sites. The age at which adaptation of cartilage to biomechanical influences can occur may thus extend beyond very early life. However, cartilage appears to be the most susceptible of the three tissues to pathological alteration. The effect of training exercise on the anatomical or patho-anatomical features of connective tissue structures is affected by the timing, type and amount of natural or imposed exercise during growth and development which precedes the training

    Protection of Aldehydes and Ketones

    No full text
    corecore