2 research outputs found

    A Synergistic Coassembly of Block Copolymer and Fluorescent Probe in Thin Film for Fine-Tuning the Block Copolymer Morphology and Luminescence Property of the Probe Molecules

    No full text
    Here, we investigate a synergistic coassembly of a block copolymer, polystyrene-<i>b</i>-poly­(4-vinylpyridine) (PS-<i>b</i>-P4VP), and a fluorescent probe molecule, pyrenebutyric acid (PBA), in thin film using block copolymer supramolecular assembly (SMA) strategy for a wide range of compositions tuned by varying the molar ratio (<i>r</i>) of PBA and 4VP units. The PBA molecules form supramolecules with PS-<i>b</i>-P4VP through H-bonding between the carboxylic acid group of 1-pyrenebutyric acid and pyridine ring of P4VP. For compositions <i>r</i> = 0, 0.1, 0.25, and 0.5, the SMAs exhibit cylindrical morphology, whereas for <i>r</i> = 0.75 and 1, the SMAs generate lamellar morphology. Interestingly, it has been observed that the orientation of the microdomains depends on the solvent used for annealing and can be switched reversibly on exposing the SMA films to corresponding solvent. In a nonselective solvent like chloroform, the microdomains are oriented normal to the substrate, whereas in a selective solvent like 1,4-dioxane, the microdomains are oriented parallel. The synergistic coassembly of PS-<i>b</i>-P4VP and PBA in SMAs with higher molar ratio results in a structure-within-structure pattern characterized by two length scales from phase separation of block copolymer and parallel π–π stacking of the pyrene moiety of PBA molecules inside the comb block. The photophysical properties of PBA in different SMAs of varying composition were studied both in solution and in thin film state and compared to pure PBA. The UV–vis study shows the H type of aggregation of PBA molecules inside the comb block by parallel stacking of the pyrene units, and the PBA molecules orient parallel to the substrate when the microdomains are oriented normal to the substrate. The pure PBA molecules in thin film exhibit excimer emission extensively, whereas the PBA molecules in different supramolecular assemblies exhibit emission ranging from monomer to mixture of monomer and excimer. The SMA shows more intense fluorescence emission compared to pure PBA both in solution and in thin film

    UV Cross-Linked Polymer Stabilized Gold Nanoparticles as a Reusable Dip-Catalyst for Aerobic Oxidation of Alcohols and Cross-Aldol Reactions

    No full text
    In this work, a gold nanoparticle (AuNP)-embedded composite polymer membrane for dip-catalysis is developed. Primarily, a polyvinylpyrrolidone-stabilized AuNP (PVP-AuNP) with an average size of 6.50 nm was synthesized by the reduction of a composite solution of Au salt and PVP. Next, the composite membrane was fabricated by simply depositing the PVP-AuNP on the Nylon membrane followed by UV cross-linking. The composite membrane having the cross-linked PVP-AuNP was utilized as a dip-catalyst for the aerobic oxidation of alcohols to carbonyl compounds under oxygen and clean reaction conditions. The catalyst was further tested for performing cross-aldol reactions. The PVP-AuNP-catalyzed oxidation reaction also has other noteworthy characteristics, such as a low catalyst loading (Au, 1.2 mol %), high yield, and selectivity with a broad substrate scope (aliphatic, aromatic, biphenyl, and heterocyclic alcohols). The turnover number (TON) and turnover frequency (TOF) for the oxidation reaction of the alcohol are calculated to be 74.5 and 12.41 h–1, respectively. The P4VP-AuNP dip-catalysts are highly stable under the reaction conditions without significant leaching of Au into the solution. The dip-catalyst demonstrates outstanding reusability up to 10 catalytic cycles while maintaining high catalytic performance and structural features. It can be easily recovered by simply pulling it out from the reaction mixture once the reaction is complete, followed by washing and drying. The practical usefulness of the suggested method was further demonstrated by the PVP-AuNP-catalyzed gram-scale synthesis of high-value chemicals like acetophenone. Although the AuNPs are already used for different reactions, their integration into dip-catalysts for oxidation of alcohols and cross-aldol reactions with a wide substrate scope is rare. Overall, these findings demonstrate that developing composite dip-catalyst systems is a realistic strategy for creating high-value chemicals in a sustainable and environmentally friendly way
    corecore